EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Variations of the earthquake diffusion rates in the Western Gulf of Corinth (Greece)

Georgios Michas1, Vasilis Kapetanidis1, George Kaviris1, and Filippos Vallianatos1,2
Georgios Michas et al.
  • 1Section of Geophysics – Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece (
  • 2Institute of Physics of Earth’s Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece

Earthquake diffusion is frequently observed in the spatiotemporal evolution of seismic clusters and regional seismicity, a characteristic that is attributed to a triggering mechanism, such as fluid flow, aseismic creep and/or stress transfer effects. In this work, we study the earthquake diffusion properties in the Western Gulf of Corinth (central Greece), an area that presents high extension rates, moderate to large magnitude earthquakes, intense microseismicity and frequent seismic swarms. We focus on the period 2013–2014 that is characterized by intense background microseismic activity along with significant seismic sequences. More specifically, the latter include the 2013 Helike swarm, the 2014 seismic sequence between Nafpaktos and Psathopyrgos, which culminated with an Mw 4.9 event on 21 September 2014, as well as moderate magnitude events that were followed by aftershock sequences. In the herein analysis, we employ a relocated earthquake catalogue of ~9000 events which delineates the activated areas during the study period in high-resolution. We consider the most significant seismic sequences and calculate their respective spatial correlation histograms and the evolution of the mean squared distance of the hypocenters with time, in order to study the earthquake diffusion rates and possible variations that might be related to the triggering mechanisms of seismicity. Our results demonstrate a weak earthquake diffusion process, analogous to subdiffusion within a stochastic framework, for the seismic sequences under consideration, providing further evidence for slow earthquake diffusion in regional and global seismicity. In addition, the earthquake diffusion rates exhibit variations that can be associated with the triggering mechanism. In particular, seismic sequences which are related with pore-fluid pressure diffusion present considerably higher diffusion rates than mainshock/aftershock sequences or the background activity. Such results may provide novel constraints on the triggering mechanisms of clustered seismic activity based on the study of the earthquake diffusion rates. 


We would like to thank the personnel of the Hellenic Unified Seismological Network ( and the Corinth Rift Laboratory Network ( for the installation and operation of the stations used in the current article. The present research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “The role of fluids in the seismicity of the Western Gulf of Corinth (Greece)” (MIS 5048127).

How to cite: Michas, G., Kapetanidis, V., Kaviris, G., and Vallianatos, F.: Variations of the earthquake diffusion rates in the Western Gulf of Corinth (Greece), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5282,, 2021.


Display file

Comments on the display

to access the discussion