EGU21-5575, updated on 04 Mar 2021
https://doi.org/10.5194/egusphere-egu21-5575
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Developing an algorithm to consider sub-grid topographic effects on surface radiation in a kilometre-scale regional climate model

Christian Steger and Christoph Schär
Christian Steger and Christoph Schär
  • Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland (christian.steger@env.ethz.ch)

In mountainous regions, atmospheric and surface conditions (like snow coverage) are strongly modulated by complex terrain. One relevant process is the topographic effect on incoming/outgoing surface short- and longwave radiation by surrounding terrain. Radiation in weather and climate models is typically represented by the two-stream approximation, which only allows for vertical radiation exchange and thus no lateral interaction with terrain. In reality, surface radiation can be modulated through various processes: the direct-beam part of the incoming shortwave radiation depends on local surface inclination and on shading from the neighbouring terrain. Incoming diffuse shortwave radiation is modified by partial sky-obstruction and terrain reflection. Outgoing longwave radiation is reduced by interception from neighbouring terrain.

In this study, we develop a parameterisation which considers the above-mentioned processes on a sub-grid scale, and implement the scheme in the Regional Climate Model COSMO (Consortium for Small-scale Modeling). On the grid scale, such a parameterisation is already available and has been applied in the numerical weather prediction mode of COSMO. Applying this parameterisation in the climate mode of COSMO has revealed that biases like the over-/underestimation of snow cover duration at south-/north-facing slopes can be improved. However, the associated radiation correction appears to be too weak because only terrain effects on the resolved scales are considered. We therefore parameterise these effects on a sub-grid scale.

The (current) surface radiation correction scheme requires consideration of topographic parameters like the elevation of the horizon and the sky-view factor. The computation of these parameters on the sub-grid scale is very expensive, because non-local information of a large high-resolution Digital Elevation Model (DEM) needs to be processed. We developed a new algorithm, which allows for horizon computations from a high-resolution DEM in a fast and flexible way. We furthermore found that existing sky-view factor algorithms might yield inaccurate results for locations with very steep terrain and subsequently developed an improved method. Output of these new algorithms will be used for the new sub-grid radiation parameterisation scheme.

How to cite: Steger, C. and Schär, C.: Developing an algorithm to consider sub-grid topographic effects on surface radiation in a kilometre-scale regional climate model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5575, https://doi.org/10.5194/egusphere-egu21-5575, 2021.