EGU21-5689
https://doi.org/10.5194/egusphere-egu21-5689
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The shifting of climate types: manifestation to phenology and ecosystems structure

Gunta Kalvāne, Andis Kalvāns, Agrita Briede, Ilmārs Krampis, Dārta Kaupe, and Solvita Rūsiņa
Gunta Kalvāne et al.
  • University of Latvia, Faculty of Geography and Earth Sciences, Rīga, Latvia (gunta.kalvane@lu.lv)

According to the Köppen climate classification, almost the entire area of Latvia belongs to the same climate type, Dfb, which is characterized by humid continental climates with warm (sometimes hot) summers and cold winters.  In the last decades whether conditions on the western coast of Latvia more characterized by temperate maritime climates. In this area there has been a transition (and still ongoing) to the climate type Cfb.

Temporal and spatial changes of temperature and precipitation regime have been examined in whole territory to identify the breaking point of climate type shifts. We used two type of climatological data sets: gridded daily temperature from the E-OBS data set version 21.0e (Cornes et al., 2018) and direct observations from meteorological stations (data source: Latvian Environment, Geology and Meteorology Centre). The temperature and precipitation regime have changed significantly in the last century - seasonal and regional differences can be observed in the territory of Latvia.

We have digitized and analysed more than 47 thousand phenological records, fixed by volunteers in period 1970-2018. Study has shown that significant seasonal changes have taken place across the Latvian landscape due to climate change (Kalvāne and Kalvāns, 2021). The largest changes have been recorded for the unfolding (BBCH11) and flowering (BBCH61) phase of plants – almost 90% of the data included in the database demonstrate a negative trend. The winter of 1988/1989 may be considered as breaking point, it has been common that many phases have begun sooner (particularly spring phases), while abiotic autumn phases have been characterized by late years.

Study gives an overview aboutclimate change (also climate type shift) impacts on ecosystems in Latvia, particularly to forest and semi-natural grasslands and temporal and spatial changes of vegetation structure and distribution areas.

This study was carried out within the framework of the Impact of Climate Change on Phytophenological Phases and Related Risks in the Baltic Region (No. 1.1.1.2/VIAA/2/18/265) ERDF project and the Climate change and sustainable use of natural resources institutional research grant of the University of Latvia (No. AAP2016/B041//ZD2016/AZ03).

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res. Atmos., 123(17), 9391–9409, doi:10.1029/2017JD028200, 2018.

Kalvāne, G. and Kalvāns, A.(2021): Phenological trends of multi-taxonomic groups in Latvia, 1970-2018, Int. J. Biometeorol., doi:https://doi.org/10.1007/s00484-020-02068-8, 2021.

How to cite: Kalvāne, G., Kalvāns, A., Briede, A., Krampis, I., Kaupe, D., and Rūsiņa, S.: The shifting of climate types: manifestation to phenology and ecosystems structure, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5689, https://doi.org/10.5194/egusphere-egu21-5689, 2021.

Displays

Display file