EGU21-6101
https://doi.org/10.5194/egusphere-egu21-6101
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A laboratory study of the effect of soil-water dynamics on the migration of gases from subsurface sources

Ana M. C. Ilie1, Tissa H. Illangasekare1, Kenichi Soga2, and William R. Whalley3
Ana M. C. Ilie et al.
  • 1Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, United States of America (ailie@mines.edu)
  • 2Department of Civil and Environmental Engineering, University of California, Berkeley CA, United States of America
  • 3Rothamsted Research, Harpenden, United Kingdom

Understanding the soil-gas migration in unsaturated soil is important in a number of problems that include carbon loading to the atmosphere from the bio-geochemical activity and leakage of gases from subsurface sources from carbon storage unconventional energy development. The soil water dynamics in the vadose zone control the soil-gas pathway development and, hence, the gas flux's spatial and temporal distribution at the soil surface. The spatial distribution of soil-water content depends on soil water characteristics. The dynamics are controlled by the water flux at the land surface and water table fluctuations. Physical properties of soil give a better understanding of the soil gas dynamics and migration from greater soil depths. The fundamental process of soil gas migration under dynamic water content was investigated in the laboratory using an intermediate-scale test system under controlled conditions that is not possible in the field. The experiments focus on observing the methane gas migration in relation to the physical properties of soil and the soil moisture patterns. A 2D soil tank with dimensions of 60 cm × 90 cm × 5.6 cm (height × length × width) was used.  The tank was heterogeneously packed with sandy soil along with a distributed network of soil moisture, temperature, and electrical conductivity sensors. The heterogeneous soil configuration was designed using nine uniform silica sands with the effective sieve numbers #16, #70, #8, #40/50, #110, #30/40, #50, and #20/30 (Accusands, Unimin Corp., Ottawa, MN), and a porosity ranging in values from 0.31 to 0.42. Four methane infrared gas sensors and a Flame Ionization detector (HFR400 Fast FID) were used for the soil gas sampling at different depths within the soil profiles and at the land surface.  A complex transient soil moisture distribution and soil gas migration patterns were observed in the 2D tank. These processes were successfully captured by the sensors. These preliminary experiments helped us to understand the mechanism of soil moisture sensor response and methane gas migration into a heterogeneous sandy soil with a view to developing a large-scale test in a 3D tank (4.87 m × 2.44 m × 0.40 m) and finally transition to field deployment.

How to cite: Ilie, A. M. C., Illangasekare, T. H., Soga, K., and Whalley, W. R.: A laboratory study of the effect of soil-water dynamics on the migration of gases from subsurface sources, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6101, https://doi.org/10.5194/egusphere-egu21-6101, 2021.

Displays

Display file