EGU21-6233
https://doi.org/10.5194/egusphere-egu21-6233
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Monitoring soil retention properties in a riverbank susceptible to fluvial erosion

Carmine Gerardo Gragnano, Guido Gottardi, and Elena Toth
Carmine Gerardo Gragnano et al.
  • Department of Civil, Chemical, Environmental and Material Engineering DICAM, University of Bologna, Bologna, Italy

One of the principal source of vulnerability for riverbanks is given by slopes instabilities, which is triggered on the riverside by fluvial erosion. In order to mitigate such erosion, the establishment of a dense herbaceous cover aims at promoting the slope protection and reducing the likelihood of embankment failure. In fact, the aerial parts of vegetation reduce the mechanical impact of river level fluctuations and rainfall on the embankment and retain sediment transported, while the belowground parts reinforce mechanically the materials forming the top of the embankment, facilitating drainage in the topmost layers and promoting plant water uptake, thus contributing to the regulation of the drying/wetting cycle.

Plating deep-rooting perennial, herbaceous species on earth embankments therefore represent a sustainable, green intervention for the protection of a riverbank susceptible to fluvial erosion, contributing to the preservation of the fluvial ecosystem environment and avoiding a wide use of grey solutions. The European research project OPERANDUM is testing also this typology of NBS, with an experimental site selected on the river Panaro, one of the main tributary of the main Po River, Italy. To investigate the effect of vegetation on the riverbank soil, a monitoring system has been installed at shallow depths. The system estimates soil water content, matric suction and pore water pressure, in order to quantify the effects of the growth of different vegetation species, which have been recently seeded on site, for analyzing the plant-soil-atmosphere interaction. The work will present the site preparation and the system implementation. The analysis of the first collected data and the outcomes of the preliminary investigations, including site and laboratory experiments, will then be discussed. Monitoring data collected along the entire vegetation growth cycle, that is expected to take around two years, will allow to quantify the influence of vegetation in the soil-atmosphere interaction processes and, on the long-term, verify its effective contribution in riverbank protection.

How to cite: Gragnano, C. G., Gottardi, G., and Toth, E.: Monitoring soil retention properties in a riverbank susceptible to fluvial erosion, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6233, https://doi.org/10.5194/egusphere-egu21-6233, 2021.

Corresponding displays formerly uploaded have been withdrawn.