EGU21-640
https://doi.org/10.5194/egusphere-egu21-640
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Characterizing the spatiotemporal dynamics of soil water stable isotopes on a karst hillslope in southwestern China

Qin Liu1, Tiejun Wang1,2, Cong-qiang Liu1,2, and Xi Chen1,2
Qin Liu et al.
  • 1Tianjin University, Insititute of Surface-Earth System Science, School of Earth System Science, Tianjin, China (qinliu@tju.edu.cn)
  • 2Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University (tiejun.wang@tju.edu.cn)

Soil water stable isotope compositions (SWSI; i.e., δD and δ18O) and soil moisture content (SMC) are widely used to illuminate water exchange processes across the atmosphere-land interface. Thus, the knowledge of spatiotemporal dynamics of these two variables is critical to help our understanding of relevant ecohydrological processes. However, in comparison to the efforts for elucidating the spatiotemporal variability in SMC, much less attention was paid to understand the spatiotemporal variability in SWSI, which also raises the question as to whether SWSI and SMC share similar spatiotemporal features. To this end, the spatiotemporal dynamics of SWSI and SMC were jointly investigated on a karst hillslope with eight sampling campaigns among two years. The method of temporal stability analysis (TSA) was adopted to evaluate the spatiotemporal patterns of SWSI and SMC in this study. Generally, both δD and δ18O exhibited considerable temporal and spatial variations; meanwhile, the variations in δD and δ18O values were relatively smaller than that of SMC. In addition, in comparison with the spatial pattern of SMC, there were no clear relationships between the standard deviation (SD) and the spatial mean of δD or δ18O. However, the SD of line-conditioned excess (lc-excess) and its mean values displayed a strong negative correlation, indicating that the spatial variations in lc-excess increased with soil evaporation. Moreover, SWSI displayed weaker temporal stability than SMC and no clear controlling factors were identified, suggesting that the spatiotemporal dynamics of SWSI might be more complex than that of SMC. This study provided comprehensive field evidence that there existed profound spatiotemporal variability in SWSI and its spatiotemporal features were different from SMC, highlighting that the spatiotemporal variability in SWSI needs to be considered in isotope-based estimations and it should be investigated separately from the spatiotemporal characteristics of SMC in future studies.

How to cite: Liu, Q., Wang, T., Liu, C., and Chen, X.: Characterizing the spatiotemporal dynamics of soil water stable isotopes on a karst hillslope in southwestern China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-640, https://doi.org/10.5194/egusphere-egu21-640, 2021.

Corresponding displays formerly uploaded have been withdrawn.