Modelling of Microwave Multi-Frequency Emission and Backscatter by a Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP)
- University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Department of Water Resources, Netherlands (h.zhao@utwente.nl)
Emission and backscattering at different frequencies have varied responses to soil physical processes (e.g., moisture redistribution, freeze-thaw) and vegetation growing/senescencing. Combing the use of active and passive microwave multi-frequency signals may provide complementary information, which can be used to better retrieve soil moisture, and vegetation biomass and water content for ecological applications. To this purpose, a Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP) was adopted in this study to simulate both emission (TB) and backscatter (σ0), in which the CLAP is backboned by the TorVergata model for modelling vegetation scattering, and an air-to-soil transition model (ATS) (accounting for surface dielectric roughness) integrated with the Advanced Integral Equation Model (AIEM) for modelling soil surface scattering. The accuracy of CLAP was assessed by both ground-based and spaceborne measurements, and the former was from the deployed microwave radiometer/scatterometer observatory at Maqu site on an alpine meadow over the Tibetan plateau. Specifically, for the passive case, simulated TB (emissivity multiplied by effective temperature) were compared to the ground-based ELBARA-III L-band observations, as well as C-band Advanced Microwave Scanning Radiometer 2 (AMSR2) and L-band Soil Moisture Active Passive (SMAP) observations. For the active case, simulated σ0 were compared to the ground-based scatterometer C- and L-bands observations, and C-band Sentinel and L-band Phased Array type L-band Synthetic Aperture Radar 2 (PALSAR-2) observations. This study is expected to contribute to improving the soil moisture retrieval accuracy for dedicated microwave sensor configurations.
How to cite: Zhao, H., Zeng, Y., Su, B., and Hofste, J.: Modelling of Microwave Multi-Frequency Emission and Backscatter by a Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6659, https://doi.org/10.5194/egusphere-egu21-6659, 2021.