Intraplate volcanism triggered by bursts in slab flux
- 1The University of Sydney, School of Geoscience, Sydney, Australia (ben.mather@sydney.edu.au)
- 2School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia
- 3GNS Science, Dunedin, New Zealand
Long-lived, widespread intraplate volcanism without age progression is one of the most controversial features of plate tectonics. The eastern margin of Australia and Zealandia has experienced extensive mafic volcanism over the last 100 million years. A plume origin has been proposed for three distinct chains of volcanoes, however, the majority of eruptions exhibit no clear age progression. Previously proposed edge-driven convection, asthenospheric shear, and lithospheric detachment fail to explain the non age-progressive eruptions across the ~5000 km wide intraplate volcanic province from Eastern Australia to Zealandia. We model the subducted slab volume over 100 million years and find that slab flux drives volcanic eruption frequency, indicating stimulation of an enriched mantle transition zone reservoir. Volcanic isotope geochemistry allows us to distinguish a HIMU reservoir (>1 Ga old) in the slab-poor south, from a northern EM1/EM2 reservoir, reflecting a more recent voluminous influx of oceanic lithosphere into the mantle transition zone. We provide a unified theory linking plate boundary and slab volume reconstructions to upper mantle reservoirs and intraplate volcano geochemistry.
How to cite: Mather, B., Muller, D., Seton, M., Ruttor, S., Nebel, O., and Mortimer, N.: Intraplate volcanism triggered by bursts in slab flux, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6857, https://doi.org/10.5194/egusphere-egu21-6857, 2021.
Corresponding displays formerly uploaded have been withdrawn.