EGU21-6932
https://doi.org/10.5194/egusphere-egu21-6932
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Recognising spatially and geochemically anomalous arc magmatism (SGAM) and implications for plate tectonic reconstructions

Gideon Rosenbaum1, John Caulfield2, Teresa Ubide1, Jack Ward1, Mike Sandiford3, and Dan Sandiford4
Gideon Rosenbaum et al.
  • 1School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia (g.rosenbaum@uq.edu.au)
  • 2Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
  • 3School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
  • 4Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

Subduction zones generate volcanic arcs, but there are many examples where magmatism in convergent plate boundaries occurs in unexpected locations relative to the subducting slab. These magmas are commonly also geochemically anomalous relative to the composition of neighbouring typical subduction-related rocks. The origin of such Spatially and Geochemically Anomalous arc Magmatism (SGAM) may correspond to local variations in subduction parameters, the presence of crustal and lithospheric heterogeneities, or the potential contribution of melts generated by slab tearing and slab edge effects. Using the Holocene volcanoes in South America as a case study, we investigated spatial and geochemical patterns of volcanism along the Andean volcanic belt. Based on a series of geochemical indices, we developed a scoring system for the composition of volcanic rocks, with the lowest and highest scores indicating ‘typical’ and ‘anomalous’ arc melting processes, respectively. The results show that a number of Holocene volcanoes in South America can be unambiguously defined as SGAM. Volcanism in these localities may correspond to disruptions in the geometry of the subducting slab, or to areas affected by mantle flow in the proximity of the slab edge. To test the potential applicability of this method for plate tectonic reconstructions, we calculated geochemical anomaly scores for whole-rock analyses of volcanic rocks from other convergent boundary settings. The results show that high geochemical anomaly scores are obtained in areas where slab tearing has been documented or postulated, such as in Mount Etna (Sicily). The occurrence of anomalous magmatic rocks in older convergent plate boundary settings (e.g., Neogene rocks from the Gibraltar area) corroborates plate tectonic reconstructions that incorporated processes such as subduction segmentation, slab tearing, and the development of asthenospheric windows. Accordingly, we suggest that the recognition of SGAM from other modern and ancient arc settings may inform on similar types of processes, even in cases where the three-dimensional slab structure is no longer detectable.

How to cite: Rosenbaum, G., Caulfield, J., Ubide, T., Ward, J., Sandiford, M., and Sandiford, D.: Recognising spatially and geochemically anomalous arc magmatism (SGAM) and implications for plate tectonic reconstructions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6932, https://doi.org/10.5194/egusphere-egu21-6932, 2021.