EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Atlantic multi-centennial variability in IPSL-CM6A-LR climate model

Weimin Jiang, Guillaume Gastineau, and Francis Codron
Weimin Jiang et al.
  • LOCEAN-IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, France (

A pronounced multi-centennial variability of the Atlantic meridional overturning circulation (AMOC) is found to be regulated by the salinity exchanges between the Atlantic and Arctic ocean in the IPSL-CM6A-LR atmosphere-ocean coupled model. The AMOC variations are preceded by salinity-driven density anomalies in the main deep convection sites in the Labrador and Greenland seas. Associated with a strong AMOC, the Arctic sea ice export through the Fram Strait reduces due to the decreased sea ice volume and anomalous northward currents. Anomalous freshwater hence accumulates at the surface in the Central Arctic. Meanwhile, the enhanced Atlantic inflow enters the Arctic through the Barents Sea and leads to a positive salinity in the Eastern Arctic subsurface. The surface freshwater anomalies last for 4 to 5 decades before they eventually reach the Lincoln Sea north of Greenland. The associated oceanic currents around Greenland reorganize, favoring the anomalous Arctic freshwater export to the North Atlantic and intensifying the stratification in deep convection sites. The AMOC then weakens, and the Central Arctic presents a positive surface salinity anomaly in turn. The oscillation switches to the opposite phase. These AMOC and sea ice fluctuations modulate climate worldwide, with a strong AMOC leading to a warming of 0.4°C in the northern extratropics, reaching up to 1°C in the Arctic lower troposphere during winter. In all seasons, a northward displacement of the intertropical convergence zone is also simulated.

How to cite: Jiang, W., Gastineau, G., and Codron, F.: Atlantic multi-centennial variability in IPSL-CM6A-LR climate model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7336,, 2021.


Display file

Comments on the display

to access the discussion