Comparison of PV potential models for africa and their potential cost implications.
- Reiner Lemoine Institute, Off-Grid, Germany (wasike.arnold@outlook.com)
We currently have more than 7500 planned mini grids, most of them in Africa. These will soon connect more than 27 million people and cost about 12 billion dollars [1]. Africa is in a good position for Photo voltaic (PV) mini grid optimization, receiving more than 1800 KWh/m2 Global Horizontal Irradiation (GHI) every year [2], for most parts of the continent. However, the lack of a coordinated renewable energy monitoring and distribution network works against optimization of PV potential models [3]. This study shows the accuracy of existing photo voltaic potential estimators like renewables ninja [3], the National Renewable Energy Laboratory (NREL), International Renewable Energy Agency (IRENA), and the global solar atlas [2], by comparing the modeled values with long term measurements from ground solar stations. This is done for more than 20 stations distributed over Africa. Our results show best correlations [4] of up to 65.3% from version 2 of the Surface Radiation Data Set from Heliosat (SARAH) derived from the Photovoltaic Geographical Information System (PVGIS). However, we also have correlations as low as 16.2% for models commonly used in off grid simulations. The sensitivities of the modeled cost of a mini grid to the variation in PV potential were tested [5][6] using the statistical range in sourced PV potential from the different estimators, giving us cost variation of more than 2.8% that may arise from the different sources.
References
1. World Bank, ESMAP - Mini grids for half a billion people
2. https://globalsolaratlas.info/map
3. doi: 10.1016/j.energy.2016.08.060
4. Wikipedia contributors. (2021, January 7). Pearson correlation coefficient. In Wikipedia, The Free Encyclopedia. Retrieved 09:00, January 20, 2021, from https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=998963119
5. Cader. 2018
5. Hoffmann. 2019
7. https://doi.org/10.2136/vzj2018.03.0062
How to cite: Wasike, A. and Cader, C.: Comparison of PV potential models for africa and their potential cost implications., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7386, https://doi.org/10.5194/egusphere-egu21-7386, 2021.