EGU21-758
https://doi.org/10.5194/egusphere-egu21-758
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Slow earthquake signatures in the ratio between acoustic and internal gravity wave amplitudes in coseismic ionospheric disturbances

Kosuke Heki and Yuki Takasaka
Kosuke Heki and Yuki Takasaka
  • Hokkaido University, Dept. Earth Planet. Sci., Sapporo, Japan (heki@sci.hokudai.ac.jp)

Frequency spectra of seismic waves from a fault rupture reflects the size of the faults, i.e. relatively large amplitudes of long period waves are excited by larger earthquakes. Anomalies in rise times of the fault movements would also influence the spectra. For example, earthquakes characterized by slow faulting, known as tsunami earthquakes, excite large tsunamis for the amplitudes of short-period seismic waves. In this study, we compare amplitudes of long- and short-period atmospheric waves excited by vertical crustal movements associated with earthquake faulting. Such atmospheric waves often reach the ionospheric F region and cause coseismic ionospheric disturbances (CID) observed as oscillations in ionospheric total electron content (TEC), with ground Global Navigation Satellite System (GNSS) receivers. CID often includes long-period internal gravity wave (IGW) components in addition to short period acoustic wave (AW) components. The latter has a period of ~4 minutes and propagate by 0.8-1.0 km/s, while the former has a period of ~12 minutes and propagate as fast as 0.2-0.3 km/s. Here we compare amplitudes of these two different waves for five earthquakes, 2011 Tohoku-oki (Mw9.0), 2010 Maule (Mw8.8), 1994 Hokkaido-Toho-Oki (Mw8.3), 2003 Tokachi-oki (Mw8.0), and the 2010 Mentawai (Mw7.9) earthquakes, using data from regional dense GNSS networks. We found two important features, i.e. (1) larger earthquakes show larger IGW/AW amplitude ratios, and (2) Mentawai earthquake, a typical tsunami earthquake, exhibits abnormally large IGW amplitudes relative to AW amplitudes. These findings demonstrate that earthquakes with longer durations for faulting, or with longer times for vertical crustal movements, excite longer period atmospheric waves such as IGW more efficiently.

How to cite: Heki, K. and Takasaka, Y.: Slow earthquake signatures in the ratio between acoustic and internal gravity wave amplitudes in coseismic ionospheric disturbances, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-758, https://doi.org/10.5194/egusphere-egu21-758, 2021.

Displays

Display file