EGU21-7620
https://doi.org/10.5194/egusphere-egu21-7620
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Soil aggregate-based nucleic acid analyses of the impact of maize roots and their root hairs on the structural diversity of microbial communities

Christoph Tebbe, Damini Damini, Damien Finn, Nataliya Bilyera, Minh Ganther, Márton Szoboszlay, Mika Tarkka, and Bahar S. Razavi
Christoph Tebbe et al.
  • (christoph.tebbe@thuenen.de)

The deposition of energy rich carbon sources released by plant roots during their growth fuels microbially driven ecosystem processes in soil, but there is a lack of understanding how microorganisms interact and collaborate. The objective of this research was therefore to characterize microbial networks as they assemble under the influence of plant roots. To identify the specific importance of root hairs, we compared the impact of a maize wild-type to a root-air defective mutant (rth3; (1).

The microbial community structure was analyzed by qPCR and 16S rRNA gene amplicon sequencing from soil DNA. In order to increase the probability of detecting truly interacting microbial partners as a basis for network analyses, we first evaluated a new protocol to obtain DNA from as little as 1 mg instead of the usual 250 mg soil samples, thereby approaching the aggregate level (2). While the diversity of bacterial 16S rRNA gene amplicons of 250-mg samples taken from the same soil was not distinct, DNA analyses from individual aggregates clearly differed from each other underlining that soil aggregates represent distinct microbial habitats.

Soil column experiments with maize grown in a loam soil (3) revealed distinct communities between rhizosphere and bulk soil. The community composition of individual aggregates showed more differences in bulk soil compared to rhizosphere. Less elaborated networks were seen in bulk soil and a profound effect of root hairs could be unravelled. Null model testing demonstrated that Actinobacteria were equally important for network connectivity independent of the root hair mutation, but for networks of the wildtype, Acidobacteria were essential for synergistic interactions and overall network structure. In contrast, Proteobacteria and Firmicutes connectivity became more important. The observed differences in community composition and interactions suggests carbon cycling, and perhaps other microbially-driven functions, are markedly affected by the presence of root hairs.

Utilizing maize root soil microcosms for studying soil zymography in the rhizosphere allowed to obtain soil samples from regions with distinct specific enzyme activities. In order to enhance the detection of actively metabolizing bacterial community members, we studied rRNA sequences and compared it to rRNA gene sequences from the same samples. Currently the data are under analysis.

References

(1) Wen, T-J, Schnable PS (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81, 833–842.

(2) Szoboszlay M, Tebbe CC (2020) Hidden heterogeneity and co-occurrence networks of soil prokaryotic communities revealed at the scale of individual soil aggregates. Microbiol. Open, e1144. DOI: 10.1002/mbo3.1144

(3) Vetterlein D et al. (2020) Experimental platforms for the investigation of spatiotemporal patterns in the rhizosphere – laboratory and field scale. J. Plant Nutr. Soil Sci., 000, 1–16 DOI: 10.1002/jpln.202000079

How to cite: Tebbe, C., Damini, D., Finn, D., Bilyera, N., Ganther, M., Szoboszlay, M., Tarkka, M., and Razavi, B. S.: Soil aggregate-based nucleic acid analyses of the impact of maize roots and their root hairs on the structural diversity of microbial communities, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7620, https://doi.org/10.5194/egusphere-egu21-7620, 2021.

Corresponding displays formerly uploaded have been withdrawn.