EGU21-7788, updated on 09 Jan 2024
EGU General Assembly 2021
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The climatic, topographic and litho-tectonic characteristics of badlands in Turkey

Aydogan Avcioglu1, Tolga Gorum1, Abdullah Akbas2, Mariano Moreno de las Heras3,4, and Omer Yetemen2
Aydogan Avcioglu et al.
  • 1Istanbul Techinical University, Eurasia Institute of Earth Science, Turkey (
  • 2Geography Department, Physical Geography Division, Bursa Uludag University, Bursa, Turkey
  • 3King Juan Carlos University, Department of Biology and Geology, Madrid, Spain
  • 4Institute of Environmental Assessment and Water Research, Barcelona, Spain

Badland areas are present in all continents, excluding Antarctica, and play a critical role in establishing local erosion and sedimentation rates. The presence of unconsolidated rocks (e.g., marls, sandstone, mudstone etc.) is a major driver controlling the distribution of badlands, which together with other environmental components, such as climate, tectonics, vegetation, and topography, determine their forms and processes. The mutual interaction of controlling factors in badlands areas provides a basis for developing a holistic approach to clarify their distribution patterns. Turkey's geodynamic evolution has led to the emergence of marine sedimentary rocks, pyroclastics, and continental clastics, especially in line with the uplift of the Anatolian Plateau and volcanism during the last 8 Ma.

This study aims to explore the country-scale distribution of badlands and the controlling factors of this badland distribution in Turkey. Remarkably wide badlands landscapes (4494 km2) have been visually inspected using Google Earth ProTM to further digitize and extract geomorphological units by applying high-resolution multispectral images provided by WorldView-4/Maxar Technology and CNES/Airbus. To obtain exact boundaries, we eliminated contiguous flat areas surrounding the identified badlands by using red relief image map (RRIM) mosaics that express surface concavity and convexity combined with topographic slope derived from a digital elevation model of 5-m spatial resolution. Last, to determine the controlling factors of badlands distribution, we have compiled a global data set comprising 1-km resolution layers of mean annual precipitation, temperature and precipitation seasonality, aridity, NDVI, rainfall erosivity factor, elevation, and majority values of regional lithology in sub-catchments units. The enhanced investigation of the complex relationship that expresses the controlling factors of badlands distribution, has been conducted by K-means unsupervised cluster analysis.

Our comprehensive regional analyses exploring the distribution and environmental attributes of major Turkish badlands identified five different groups or clusters of badlands that display spatial coherence with climatic and tectonic settings. We argue that Turkey's climatic and topographic transition zones, varying from Mediterranean climate dominated areas to the more arid Central Anatolian Plateau, and tectonically‑induced topographic barriers play a relevant role in discriminating these groups of badlands. Moreover, the Anatolian diversity of sedimentary rocks, which consists of Neogene and Paleogene continental clastics, volcano clastics & pyroclastics, and lacustrine deposits, makes an essential contribution to the identified, extensive badland distribution.

This study has been produced benefiting from the 2232 International Fellowship for Outstanding Researchers Program of the Scientific and Technological Research Council of Turkey (TUBITAK) through grant 118C329. The financial support received from TUBITAK does not mean that the content of the publication is approved in a scientific sense by TUBITAK.

How to cite: Avcioglu, A., Gorum, T., Akbas, A., Moreno de las Heras, M., and Yetemen, O.: The climatic, topographic and litho-tectonic characteristics of badlands in Turkey, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7788,, 2021.


Display file