EGU21-8127
https://doi.org/10.5194/egusphere-egu21-8127
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Cyclic soil-root mechanical interaction

Anthony Leung, Ali Akbar Karimzadeh, and Zhaoyi Wu
Anthony Leung et al.
  • Hong Kong University of Science and Technology, Civil and Environmental Engineering, Hong Kong (ceanthony@ust.hk)

Plant roots have been considered to be effective to reinforce shallow soil slopes under rainfall conditions. Recent evidence from geotechnical centrifuge modelling shows that plant roots could improve earthquake-induced slope stability and reduce slope crest settlement. However, the underlying fundamental mechanisms of soil-root mechanical interaction against seismic loading are unclear. Although there has been a large volume of studies focusing on root reinforcement, cyclic soil-root mechanical interaction has rarely been investigated. Moreover, whether plant roots could reduce the liquefaction potential of rooted soil. This presentation will present some new test data and evidence about (1) cyclic root biomechanical behaviour and (2) cyclic responses of root-reinforced soil. In part (1), results of cyclic uniaxial tensile tests on roots of a wide diameter range will be presented, including any root hardening or softening and change in the size of hysteresis loops under displacement-controlled loading condition. Special attention will be paid on any observation of cyclic-induced root mechanical fatigue. In part (2), results of a comprehensive set of monotonic and cyclic triaxial tests on rooted soil will be presented. The cyclic behaviour observed will be interpreted through the monotonic behaviour observed along both the triaxial compression and extension paths. Any change in soil failure mechanism from limited flow failure to cyclic mobility due to plant roots, and how/when this change occurs at different root volume and cyclic stress ratio, will be discussed in detailed. A new attempt to interpret the liquefaction resistance through an energy-based approach will be made to evaluate the energy dissipation mechanism in rooted soils.

How to cite: Leung, A., Karimzadeh, A. A., and Wu, Z.: Cyclic soil-root mechanical interaction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8127, https://doi.org/10.5194/egusphere-egu21-8127, 2021.

Corresponding displays formerly uploaded have been withdrawn.