EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Near-surface glaciotectonic structures in the sediments of an overdeepened glacial valley revealed by a shallow 3D seismic survey

David Tanner, Hermann Buness, and Thomas Burschil
David Tanner et al.
  • Leibniz Institute for Applied Geophysics, Hannover, Germany (

Glaciotectonic structures commonly include thrusting and folding, often as multiphase deformation. Here we present the results of a small-scale 3-D P-wave seismic reflection survey of glacial sediments within an overdeepened glacial valley in which we recognise unusual folding structures in front of push-moraine. The study area is in the Tannwald Basin, in southern Germany, about 50 km north of Lake Constance, where the basin is part of the glacial overdeepened Rhine Valley. The basin was excavated out of Tertiary Molasse sediments during the Hosskirchian stage, and infilled by 200 m of Hosskirchian and Rissian glacioclastics (Dietmanns Fm.). After an unconformity in the Rissian, a ca. 7 m-thick till (matrix-supported diamicton) was deposited, followed by up to 30 m of Rissian/Würmian coarse gravels and minor diamictons (Illmensee Fm.). The terminal moraine of the last Würmian glaciation overlies these deposits to the SW, not 200 m away.

We conducted a 3-D, 120 x 120 m², P-wave seismic reflection survey around a prospective borehole site in the study area. Source/receiver points and lines were spaced at 3 m and 9 m, respectively. A 10 s sweep of 20-200 Hz was excited by a small electrodynamic, wheelbarrow-borne vibrator twice at every of the 1004 realized shot positions. We recognised that the top layer of coarse gravel above the till is folded, but not in the conventional buckling sense, rather as cuspate-lobate folding. The fold axes are parallel to the terminal moraine front. The wavelength of the folding varies between 40 and 80 m, and the thickness of the folded layer is on average about 20 m. Cuspate-lobate folding is typical for deformation of layers of differing mechanical competence (after Ramsay and Huber 1987; µ12 less than 10), so this tell us something about the relative competence (or stiffness) of the till layer compared to the coarse clastics above. We also detected small thrust faults that are also parallel to the push-moraine, but these have very little offset and most of the deformation was achieved by folding.

Ramsay, J.G. and Huber, M. I. (1987): The techniques of modern structural geology, vol. 2: Folds and fractures: Academic Press, London, 700 pp.

How to cite: Tanner, D., Buness, H., and Burschil, T.: Near-surface glaciotectonic structures in the sediments of an overdeepened glacial valley revealed by a shallow 3D seismic survey, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8195,, 2021.


Display file