EGU21-845
https://doi.org/10.5194/egusphere-egu21-845
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Increasing microbial carbon use efficiency with nitrogen addition resulting from plant-mineral interaction

Xuehui Feng, Jie Hu, Yuanhe Yang, and Leiyi Chen
Xuehui Feng et al.
  • Institute of Botany, Chinese Academy of Sciences, Beijing, China (xhfeng@ibcas.ac.cn)

Elucidating the mechanisms underlying the changes in microbial physiology under anthropogenic nitrogen (N) input is of fundamental importance for understanding the carbon-N interaction under global environmental change. Carbon use efficiency (CUE), the ratio of microbial growth to assimilation, represents a critical microbial metabolic parameter that controls the fate of soil C. Despite the recognized importance of mineral protection as a driver of soil C cycling in terrestrial ecosystems, little is known on how mineral-organic association will modulate the response of microbial CUE to increasing N availability. Here, by combining a 6-year N‐manipulation experiment and 18O isotope incubation, mineral analysis and a two-pool C decomposition model, we evaluate how N-induced modification in mineral protection affect the changes in microbial growth, respiration and CUE. Our results showed that microbial CUE increased under N enrichment due to the enhanced microbial growth and decreased respiration. Such changes in microbial physiology further led to a significant decrease in CO2-C release from the slow C pool under high N input. More importantly, the disruption in mineral-organic association induced by elevated root exudates is the foremost reason for the enhanced microbial growth and CUE under high N input. Taken together, these findings provide an empirical evidence for the linkage between soil mineral protection and microbial physiology, and highlight the need to consider the plant-mineralogy-microbial interactions in Earth system models to improve the prediction of soil C fate under global N deposition.

How to cite: Feng, X., Hu, J., Yang, Y., and Chen, L.: Increasing microbial carbon use efficiency with nitrogen addition resulting from plant-mineral interaction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-845, https://doi.org/10.5194/egusphere-egu21-845, 2021.

Corresponding displays formerly uploaded have been withdrawn.