EGU21-8537
https://doi.org/10.5194/egusphere-egu21-8537
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Remediation of intrinsic preferential flow pathways in water repellent soils' profile using surfactant

Felix Abayomi Ogunmokun and Rony Wallach
Felix Abayomi Ogunmokun and Rony Wallach
  • The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment, Soil and Water Sciences, Rehovot, Israel (felix.ogunmokun@mail.huji.ac.il)

Preferential flow pathways and uneven soil water and chemical distribution are intrinsic phenomena in water repellent soils. These uneven water and chemical distribution reduce water uptake by the plant roots on one hand and enhance deep percolation and chemical leaching, on the other hand, thereby enhancing soil and groundwater pollution. The results of attempts to remediate soil water repellency and heterogeneous spatial distribution of soil moisture and chemicals within the root zone by surfactant application will be addressed.  

This study was conducted in a commercial citrus orchard in central Israel that is irrigated with treated wastewater. Previous studies have revealed that prolonged irrigation using treated wastewater renders the soil water repellent with its associated adverse effects. The soil water distribution within the soil profile was monitored by frequent electrical resistance tomography (ERT) scans. The spatial distribution of different chemicals within the soil profile was obtained by chemical analysis of disturbed soil samples taken manually along a line transects. Two methods of surfactant application were used and compared: 1) on soil surface spraying (area source), 2) via drippers application (point source).

Surfactant spraying onto the water repellent soil's surface succeeded in turning the soil wettable, diminishing the preferential flow pathways, and renders the soil water and dissolved chemicals uniformly distributed. In contrast, drip applied surfactant exacerbated the incidence of preferential flow pathways and the leaching of solutes from the soil. Moreover, the overall average water content in the 0-40 cm soil layer significantly increased with surfactant spraying than with drip application even though both were higher than the control plots. These results substantiate previous laboratory-scale studies in which surfactant was applied to water repellent soils packed in a transparent flow chamber by these two methods. Additionally, the yield from the on-surface surfactant sprayed plots show a slight continuous increase compared to the untreated plots.

How to cite: Ogunmokun, F. A. and Wallach, R.: Remediation of intrinsic preferential flow pathways in water repellent soils' profile using surfactant, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8537, https://doi.org/10.5194/egusphere-egu21-8537, 2021.

Displays

Display file