EGU21-8541
https://doi.org/10.5194/egusphere-egu21-8541
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

KineDyn: Thermo-Mechanical Method for Validation of Seismic Interpretations with Dynamic Forward Models 

Iskander Muldashev1, Marta Pérez-Gussinyé1,2, Mário Neto Cavalcanti de Araújo2,3, and Zhonglan Liu2
Iskander Muldashev et al.
  • 1University of Bremen, Faculty of Geosciences, Bremen, Germany (iskander@uni-bremen.de)
  • 2MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
  • 3CENPES Research Center, Petrobras, Rio de Janeiro, Brazil

Rifts and rifted margins result from interaction of several physical processes, which produce a range of crustal structures, subsidence histories, and sedimentary architectures. Study of these processes in academia and industry includes kinematic modelling (i.e. cross-section restoration, backstripping) combined with simple thermomechanical models and dynamic modelling. In kinematic models, the thinning of the lower crust and mantle is kinematically imposed in the form of pure shear, which contradicts natural non-linear viscous behavior. Although, kinematic modelling can provide a crustal thinning profile, heatflow estimates, subsidence rates etc., imposed extension of the lower crust and mantle might strongly impact the result. On the other hand, a dynamic approach allows to model the whole range of possible physical processes, but it cannot be used to model particular extension histories.
Here, we show a new modelling technique, namely KineDyn, to combine the advantages of the above-mentioned approaches into a single modelling framework. Our method employs full non-linear visco-elasto-plastic rheology, surface process of erosion and sediment transport, decompression melting of the mantle, and serpentinization of mantle rocks. Faults are introduced as weak planes in the upper crust, in order to simulate faulting during the model run. In our approach, faults are initially controlled by prescribed initial locations, offsets and timings, while the rest of the model is resolved in a fully dynamic mode. Since fault planes are much weaker than the surrounding upper crust, extension of the model naturally leads to slip on the faults. We demonstrate that faults modelled this way reproduce a natural behavior, including rotation due to flexure and unloading of the fault plane.
In order to reconstruct the evolution of an existing rift or rifted margin we model extension of the lithosphere with controlled faulting. To do this we use the interpreted spatio-temporal evolution of the faulting from a seismic profile to guide the evolution of the dynamic model. After a trial-and-error process, where we correct the faults’ locations, the thicknesses of layers, surface process’s parameters, initial thermal gradient etc., we obtain the model that best fits the observations. Thus, KineDyn gives, in effect, the same results as existing section restoration techniques (i.e. the potential history of faulting) and forward modeling techniques (i.e. the likely history of sedimentation, thinning, heat flow and subsidence), while simultaneously taking into account non-linear interactions between processes occurring during rifting.
In this work we show the methodology, examples, tests and benchmarks of the technique. Finally, we present applications of KineDyn for the following rifts and rifted margins: Malawi Rift, East African Rift System, hyper-extended West Iberia Margin, and ultra-wide Santos-Benguela Rifted Margin.

How to cite: Muldashev, I., Pérez-Gussinyé, M., Neto Cavalcanti de Araújo, M., and Liu, Z.: KineDyn: Thermo-Mechanical Method for Validation of Seismic Interpretations with Dynamic Forward Models , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8541, https://doi.org/10.5194/egusphere-egu21-8541, 2021.

Displays

Display file