EGU21-8757
https://doi.org/10.5194/egusphere-egu21-8757
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Characterizing Dam Induced Flood at Downstream of a Hydel Project 

Dipsikha Devi1, Anupal Baruah2, and Arup Kumar Sarma3
Dipsikha Devi et al.
  • 1Indian Institute of Technology Guwahati, Department of Civil Engineering, Guwahati, India (devidipsikha27@gmail.com)
  • 2Indian Institute of Technology Guwahati, Department of Civil Engineering, Guwahati, India (anupalbaruah@iitg.ac.in)
  • 3Indian Institute of Technology Guwahati, Department of Civil Engineering, Guwahati, India (aks@iitg.ac.in)

Flooding due to sudden release from a hydropower dam during monsoon is becoming a serious concern for downstream locality, especially when there is lack of coordination between the dam authority and the Disaster Management Authority (DMA) at downstream. For hilly river, a disastrous flash flood is generally caused by short duration high intensity precipitation and a pondage hydropower project cannot attenuate such flood. Generally, reservoir simulation/optimization for a hydropower project is carried out on monthly, ten-daily or at best on daily basis to determine the best operating policy and to analyze impact of such operation on the flow scenario and therefore, in conventional analysis such flash flood event goes un-noticed. A detailed investigation of the downstream flooding is required before the construction of any hydropower project with at least on hourly basis to get insight into the impact of such inflow at downstream. Non-availability of short duration precipitation/flow data in interior project area, particularly in developing country hinder such analysis. Need and scope of such analysis is demonstrated by using a typical flow hydrograph of 48 hours, having two flood peaks, as inflow to the Lower Subansiri Hydroelectric Project (LSHP). The project is located in the Subansiri River, the largest tributary of the Brahmaputra River in India. Two operating policies; i) Standard Operating Policy (SOP) and ii) Dynamic Programming (DP) generated operating policy have been tested and both the polices have generated similar hourly flow time series of total reservoir outflow (spill + Release). These reservoir operation models have been coupled with the hydrodynamic model to route the hourly reservoir outflow from LSHP to a flood prone area located 13Km downstream of it. Post dam flood scenario thus generated is compared with the pre dam flood scenario by routing the same inflow hydrograph without considering the dam. As the river has an embankment, and flooding occurs only when the embankment fails, a specified water level at the downstream section has been considered as critical for flooding for the purpose of a comparative study.  For the considered inflow hydrograph, it is observed that the flood magnitude is not increased by the action of dam operation rather peaks get slightly attenuated. However, in natural condition without dam, flood rises gradually providing prior information to the locality and providing sufficient time for completing pre-disaster actions based on experience. With inclusion of dam, peak flow rises vary rapidly from a very low flow without showing any indication of flood beforehand and thus flood becomes more disastrous. Sudden fluctuation of water level can also cause failure of river bank and progressive bank failure can eventually cause the embankment to fail. The analysis has shown the possible impact of hydel project with more clarity to help disaster manager prepare mitigation measures in an informed way.

How to cite: Devi, D., Baruah, A., and Sarma, A. K.: Characterizing Dam Induced Flood at Downstream of a Hydel Project , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8757, https://doi.org/10.5194/egusphere-egu21-8757, 2021.

Displays

Display file