EGU21-8876
https://doi.org/10.5194/egusphere-egu21-8876
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A novel data-driven method to estimate GIA signal from Earth observation data

Bramha Dutt Vishwakarma, Yann Ziegler, Sam Royston, and Jonathan L. Bamber
Bramha Dutt Vishwakarma et al.
  • School of Geographical sciences, University of Bristol, UK

Geophysical inversions are usually solved with the help of a-priori constraints and several assumptions that simplify the physics of the problem. This is true for all the inversion approaches that estimate GIA signal from contemporary datasets such as GNSS vertical land motion (VLM) time-series and GRACE geopotential time-series. One of the assumptions in these GIA inversions is that the change in VLM due to GIA can be written in terms of surface mass change and average mantle density. Furthermore, the surface density change is obtained from GRACE data using the relations derived in Wahr et al., 1998, which actually is only applicable for surface processes (such as hydrology) and not for sub-surface processes such as GIA. This leaves us with a tricky signal-separation problem. Although many studies try to overcome this by constraining the inversion with the help of constrains from a priori GIA models, the output is not free from influence of GIA models that are known to have huge uncertainties. In this presentation, we discuss this problem in detail, then provide a novel mathematical framework that solves for GIA without any a priori GIA model. We validate our method in a synthetic environment first and then estimate a completely data-driven GIA field from contemporary Earth-observation data.

How to cite: Vishwakarma, B. D., Ziegler, Y., Royston, S., and Bamber, J. L.: A novel data-driven method to estimate GIA signal from Earth observation data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8876, https://doi.org/10.5194/egusphere-egu21-8876, 2021.

Displays

Display file