EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Characterizing the atmospheric boundary layer over Disko Bay: local structure and links to global dynamics

Arno Hammann and Kirsty Langley
Arno Hammann and Kirsty Langley
  • Asiaq - Greenland Survey, Nuuk, Greenland (

Surface air temperatures have been rising roughly twice as fast in the Arctic as in the global average (“Arctic amplification”). Not all responsible physical mechanisms are understood or known, and current climate models frequently underestimate the pace of Arctic warming. Knowledge is lacking specifically about processes involving moisture and the formation of clouds in the the atmospheric boundary layer (ABL). This reduces the reliability of Arctic and global climate change projections and short-term weather predictions.

We use a comprehensive multi-sensor observational dataset from the Greenland Ecosystem Monitoring (GEM, research site in Qeqertarsuaq, Greenland, in order to identify dominant structural and dynamic patterns of the ABL. Central to this dataset are the atmospheric column profiles of air temperature and water content acquired by a passive microwave radiometer, one of only three such instruments operating in Greenland. The in situ data is related to the large-scale circulation via an analysis of the global ERA5 reanalysis dataset, with a focus on moisture transport from humid latitudes.

The statistical analysis comprises both process-level relationships between observed variables (regressions) for individual events and pattern recognition techniques (clustering) for the identification of dominant patterns on the small and large scale, an approach particularly suited for the study of an unsteady, changing climate. Moisture enters the Arctic in narrow and infrequent atmospheric bands termed atmospheric rivers, and climate change may alter the frequency of such events, but also the thermodynamic reaction of the ABL to the moisture influx. The current knowledge of the cloudy polar ABL is insufficient to predict important aspects of its behavior, e.g. the lifetime of clouds and the strength of their radiative effect, as well as how large-scale atmospheric dynamics and the presence of elevated inversion layers interact with the structure of the ABL.

How to cite: Hammann, A. and Langley, K.: Characterizing the atmospheric boundary layer over Disko Bay: local structure and links to global dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8957,, 2021.