EGU21-904, updated on 03 Mar 2021
https://doi.org/10.5194/egusphere-egu21-904
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

euptfv2: updated hydraulic pedotransfer functions for Europe

Brigitta Szabó1, Melanie Weynants2, and Tobias Weber3
Brigitta Szabó et al.
  • 1Institute for Soil Sciences and Agricultural Research, Centre for Agricultural Research, Budapest, Hungary (toth.brigitta@atk.hu)
  • 2European Commission Joint Research Centre, Ispra, Italy (melanie.weynants@ec.europa.eu)
  • 3Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany (tobias.weber@uni-hohenheim.de)

We present improved European hydraulic pedotransfer functions (PTFs) which now use the machine learning algorithm random forest and include prediction uncertainties. The new PTFs (euptfv2) are an update of the previously published euptfv1 (Tóth et al., 2015). With the derived hydraulic PTFs soil hydraulic properties and van Genuchten-Mualem model parameters can be predicted from easily available soil properties. The updated PTFs perform significantly better than euptfv1 and are applicable for 32 predictor variables combinations. The uncertainties reflect uncertainties from the considered input data, predictors and the applied algorithm. The euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity (both -100 and -330 cm matric potential head) and wilting point (-15,000 cm matric potential head), plant available water content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-van Genuchten parameters of the moisture retention and hydraulic conductivity curves. The influence of predictor variables on predicted soil hydraulic properties is explored and suggestions to best predictor variables given.

The algorithms have been implemented in a web interface (https://ptfinterface.rissac.hu) and an R package (https://doi.org/10.5281/ZENODO.3759442) to facilitate the use of the PTFs, where the PTFs’ selection is automated based on soil properties available for the predictions and required soil hydraulic property.

The new PTFs will be applied to derive soil hydraulic properties for field- and catchment- scale hydrological modelling in European case studies of the OPTAIN project (https://www.optain.eu/). Functional evaluation of the PTFs is performed under the iAqueduct research project.

 

This research has been supported by the Hungarian National Research, Development and Innovation Office (grant no. KH124765), the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4), and the German Research Foundation (grant no. SFB 1253/12017). OPTAIN is funded by the European Union’s Horizon 2020 Program for research and innovation under Grant Agreement No. 862756.

How to cite: Szabó, B., Weynants, M., and Weber, T.: euptfv2: updated hydraulic pedotransfer functions for Europe, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-904, https://doi.org/10.5194/egusphere-egu21-904, 2021.

Displays

Display file