Optical GNSS Receiver for the ESA's NGGM-MAGIC Mission and for LEO Satellites with the Highest Orbit Accuracy
- TU München, Munich, Germany
Precise orbit determination (POD) of LEO satellites is done with a geodetic grade GPS receiver measuring carrier-phase between a LEO and GPS satellites, and in some cases this is supported with a DORIS instrument measuring Doppler between LEO and ground DORIS stations. Over the last 20 years we have demonstrated 1-2 cm accurate LEO POD and about 1 mm for inter-satellite distance. In order to increase the accuracy of the single satellite POD or satellites in LEO formation we propose an “optical GNSS receiver”, a cw-laser on a LEO satellite to measure Doppler between a LEO and GNSS satellite(s) equipped with SLR arrays and to develop it for the next gravity field mission.
The objective of the ESA mission NGGM-MAGIC (Next Generation Gravity Mission - Mass-change and Geosciences International Constellation) is the long-term monitoring of the temporal variations of Earth’s gravity field at high resolution in time (3 days) and space (100 km), complementing the GRACE-FO mission from NASA at 45° orbit inclination. Currently, the GRACE-type mission design is based on optical carrier-phase measurements between two LEO satellites flying in a formation and separated by 200 km.
We propose an extension of the GRACE-type LEO-LEO concept by the “optical GNSS receiver” to provide Doppler measurements between a LEO satellite and GNSS satellite(s) equipped with SLR corner cubes by means of a cw-laser onboard a LEO satellite. Such a “vertical” LEO-GNSS observable is missing in the classical GRACE-type LEO-LEO concept. If Doppler measurements are carried out from the two GRACE-type satellites in the LEO orbit to the same GNSS satellite and by forming single-differences to that GNSS satellite one can remove any GNSS-orbit related error in the measured LEO-GNSS Doppler. In this way, radial orbit difference can be obtained between the two GRACE-type satellites (free of all GNSS orbit errors) and complement “horizontal” LEO-LEO measurements between the two GRACE-type satellites in the LEO orbit.
The non-mechanical laser beam steering has been developed for an angle window of -40° to +40° and it does not require a rotating and a big telescope in LEO (no clouds and atmosphere turbulences in LEO). Therefore, in such a beam-steering window, one could always observe with a fiber cw-laser one GNSS satellite close to the zenith from both GRACE-type satellites. The non-mechanical beam steering concept in zenith direction can be supported by a small 10-cm like (fixed) Ritchey-Chrétien telescope (COTS), a Cassegrain reflector design widely used for LEO satellites, e.g., for James Webb Space Telescope or for an optical Earth imaging with Cubesats with the 50 cm resolution.
Considering that several GNSS satellites in the field of view could be observed from a LEO satellite with this approach (including LAGEOS-1/2 and Etalon satellites) and the non-mechanical laser beam steering could be extended towards the LEO horizon, an “optical” GNSS receiver is a new concept for POD of LEO satellites. Here, we provide simulations of this new concept for LEO POD with GNSS/SLR constellations equipped with SLR arrays and discuss all new applications this new concept could bring.
How to cite: Svehla, D.: Optical GNSS Receiver for the ESA's NGGM-MAGIC Mission and for LEO Satellites with the Highest Orbit Accuracy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9072, https://doi.org/10.5194/egusphere-egu21-9072, 2021.