EGU21-9086
https://doi.org/10.5194/egusphere-egu21-9086
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development for wind friction velocity retrieval algorithm based on the SFMR and NOAA dropwindsondes measurements in hurricane conditions

Evgeny Poplavsky, Nikita Rusakov, Olga Ermakova, Daniil Sergeev, Yuliya Troitskaya, and Galina Balandina
Evgeny Poplavsky et al.
  • Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

The work is concerned with the development of a method for the retrieval of tropical cyclones boundary atmospheric layer parameters, namely the wind friction velocity and wind speed at meteorological height. For the analysis, we used the results of field measurements of wind speed profiles from dropwindsondes launched from National Oceanic and Atmospheric Administration (NOAA) aircraft and collocated data from the Stepped-Frequency Microwave Radiometer (SFMR) located onboard of the same aircraft.

The results of radiometric measurements were used to obtain the emissivity values, which were compared with the field data obtained from the falling dropwindsondes. Using the algorithm taking into account the self-similarity of the velocity defect profile (Ermakova et al., 2019), the parameters of the atmospheric boundary layer were determined from the data measured by dropwindsondes. This algorithm gives an opportunity to obtain the wind speed value at meteorological height and wind friction velocity from the averaged data in the wake part of the profiles of the marine atmospheric boundary layer.

A comparison of the wind speed U10 dependencies, retrieved from the SFMR data and measurements from dropwindsondes, with the similar dependencies obtained in (Uhlhorn et al., 2007), was made, and their satisfactory agreement was demonstrated. This work was supported by the RFBR projects No. 19-05-00249, 19-05-00366.

How to cite: Poplavsky, E., Rusakov, N., Ermakova, O., Sergeev, D., Troitskaya, Y., and Balandina, G.: Development for wind friction velocity retrieval algorithm based on the SFMR and NOAA dropwindsondes measurements in hurricane conditions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9086, https://doi.org/10.5194/egusphere-egu21-9086, 2021.

Displays

Display file