EGU21-9420
https://doi.org/10.5194/egusphere-egu21-9420
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Single-station seismic monitoring of permafrost on Mt. Zugspitze (Germany) over the past 15 years

Fabian Lindner and Joachim Wassermann
Fabian Lindner and Joachim Wassermann
  • LMU Munich, Germany (flindner@geophysik.uni-muenchen.de)

Permafrost thawing affects mountain slope stability and can trigger hazardous rock falls. As rising temperatures promote permafrost thawing, spatio-temporal monitoring of long-term and seasonal variations in the perennially frozen rock is therefore crucial in regions with high hazard potential. With various infrastructure in the summit area and population in the close vicinity, Mt. Zugspitze in the German/Austrian Alps is such a site and permafrost has been monitored with temperature logging in boreholes and lapse-time electrical resistivity tomography. Yet, these methods are expensive and laborious, and are limited in their spatial and/or temporal resolution.

Here, we analyze continuous seismic data from a single station deployed at an altitude of 2700 m a.s.l. in a research station, which is separated by roughly 250 m from the permafrost affected ridge of Mt. Zugspitze. Data are available since 2006 (with some gaps) and reveal high-frequency (>1 Hz) anthropogenic noise likely generated by the cable car stations at the summit. We calculate single-station cross-correlations between the different sensor components and investigate temporal coda wave changes by applying the recently introduced wavelet-based cross-spectrum method. This approach provides time series of the travel time relative to the reference stack as a function of frequency and lag time in the correlation functions. In the frequency and lag range of 1-10 Hz and 0.5-5 s respectively, we find various parts in the coda that show clear annual variations and an increasing trend in travel time over the past 15 years of consideration. Converting the travel time variations to seismic velocity variations (assuming homogeneous velocity changes affecting the whole mountain) results in seasonal velocity changes of up to a few percent and on the order of 0.1% decrease per year. Yet, estimated velocity variations do not scale linearly with lag time, which indicates that the medium changes are localized rather than uniform and that the absolute numbers need to be taken with caution. The annual velocity variations are anti-correlated with the temperature record from the summit but delayed by roughly one month.

The phasing of the annual seismic velocity change (relative to the temperature record) is in agreement with a previous study employing lapse-time electrical resistivity tomography. Furthermore, the decreasing trend in seismic velocity happens concurrently with an increasing trend in temperature. The results therefore suggest that the velocity changes are related to seasonal thaw and refreeze and permafrost degradation and thus highlight the potential of seismology for permafrost monitoring. By adding additional receivers and/or a fiber-optic cable for distributed acoustic sensing, hence increasing the spatial resolution, the presented method holds promise for lapse-time imaging of permafrost bodies with high spatio-temporal resolution from passive measurements.

How to cite: Lindner, F. and Wassermann, J.: Single-station seismic monitoring of permafrost on Mt. Zugspitze (Germany) over the past 15 years, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9420, https://doi.org/10.5194/egusphere-egu21-9420, 2021.

Displays

Display file