EGU21-9444, updated on 04 Mar 2021
https://doi.org/10.5194/egusphere-egu21-9444
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Shifts in the frequency of sequentially occurring late-spring frost and drought impact the dynamics of non-structural carbohydrates in European beech

Benjamin F. Meyer, Anja Rammig, Allan Buras, and Christian S. Zang
Benjamin F. Meyer et al.
  • Technical University of Munich, Professorship of Land Surface-Atmosphere Interactions, Research Department Ecology and Ecosystem Management, Freising, Germany (ben.meyer@tum.de)

In the past, terrestrial ecosystems have largely functioned as carbon sinks, capturing nearly 30% of anthropogenic carbon dioxide emissions (Le Quéré et al. 2009). Forest ecosystems, which cover roughly 30% of the land surface, play a fundamental role in maintaining this sink by storing nearly half of all terrestrial carbon (Pan et al. 2011; Bonan 2008). Over large parts of Europe, these forest ecosystems are dominated by European beech. Consequently, the reaction of beech to climate extremes is central to the ability of European forests to act as carbon sinks. Disconcertingly, the projected – and indeed already observed – increase in frequency and severity of drought across Europe threatens to shift forest ecosystems from carbon sinks to carbon sources (Ciais et al. 2005). Concurrently, the incidence of late-spring frost events in Europe is on the rise. While these events are considerably more localized and do not result in the same widespread reduction of ecosystem productivity as droughts, the damage to the photosynthetic apparatus of affected trees forces the mobilization of non-structural carbohydrates (NSC) to ensure tree survival. We analyze high-resolution historical (E-OBS 0.1°) and projected (EURO-CORDEX RCP 2.6 & RCP 8.5 0.11°) climate data to identify localized changes in the frequency of sequentially occurring drought and late-spring frost events across Europe. Subsequently, we use a modified version of the standalone NSC-model SUGAR (Jones et al. 2020) to ascertain the effect of sequentially occurring climate extremes on the carbon reserves of European beech forests. Here, we identify differences in the impact of isolated extremes (either frost or drought) and sequential extremes (frost followed by drought and vice versa) on the regulation of the NSC pool. Through the integration of SUGAR with the LPJ-GUESS DGVM (Smith et al. 2014; Sitch et al. 2003) we further quantify the effect of sequentially occurring climate extremes on the productivity of beech forest ecosystems in central Europe.

 

How to cite: Meyer, B. F., Rammig, A., Buras, A., and Zang, C. S.: Shifts in the frequency of sequentially occurring late-spring frost and drought impact the dynamics of non-structural carbohydrates in European beech, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9444, https://doi.org/10.5194/egusphere-egu21-9444, 2021.

Displays

Display file