Linking air stagnation in Europe with the large-scale atmospheric circulation
- 1Department of Earth Physics and Astrophysics, Universidad Complutense de Madrid, Madrid, Spain (jacob.w.maddison@gmail.com)
- 2Instituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain
Here, the linear relationship between European air stagnation and the large-scale circulation is explored across all seasons and during the 1979--2018 period. Dynamical based indices identifying atmospheric blocking, Rossby wave breaking, subtropical ridges, and the North Atlantic eddy-driven and subtropical jets are used to describe the large-scale circulation as predictors in a statistical model of air stagnation variability. It is found that the large-scale circulation can explain approximately 60% of the variance in monthly air stagnation in five distinct regions within Europe. The variance explained by the model does not vary strongly across regions and seasons. However, the dynamical indices most related to air stagnation do depend on region and season. The blocking and Rossby wave breaking predictors tend to be the most important for describing air stagnation variability in northern regions whereas ridges and the subtropical jet are more important to the south. The demonstrated correspondence between air stagnation and the large-scale circulation can be used to assess the representation of air stagnation in climate models, which is key for understanding how air quality and its associated health risks may change in the future.
How to cite: Maddison, J., Abalos, M., Barriopedro, D., Garcia Herrera, R., Garrido Pérez, J. M., and Ordóñez, C.: Linking air stagnation in Europe with the large-scale atmospheric circulation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9465, https://doi.org/10.5194/egusphere-egu21-9465, 2021.