EGU21-9758, updated on 04 Mar 2021
https://doi.org/10.5194/egusphere-egu21-9758
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Climatic and Biotic Controls on Topographic Asymmetry at the Global Scale

Taylor Smith and Bodo Bookhagen
Taylor Smith and Bodo Bookhagen
  • Universität Potsdam, Potsdam-Golm, Germany (tasmith@uni-potsdam.de)

Insolation differences play a primary role in controlling microclimate and vegetation cover, which together influence the development of topography. Topographic asymmetry (TA), or slope differences between terrain aspects, has been well documented in small-scale, field-based, and modeling studies. Here we combine a suite of environmental (e.g., vegetation, temperature, solar insolation) and topographic (e.g., elevation, drainage network) data to explore the driving mechanisms and markers of TA on a global scale. Using a novel empirical TA analysis method, we find that (1) steeper terrain has higher TA magnitudes, (2) globally, pole-facing terrain is on average steeper than equator-facing terrain, especially in mid-latitude, tectonically quiescent, and vegetated landscapes, and (3) high-elevation and low-temperature regions tend to have terrain steepened towards the equator. We further show that there are distinct differences in climate and vegetation cover across terrain aspects, and that TA is reflected in the size and form of fluvial drainage networks. Our work supports the argument that insolation asymmetries engender differences in local microclimates and vegetation on opposing terrain aspects, which broadly encourage the development of asymmetric topography across a range of lithologic, tectonic, geomorphic, and climatic settings.

How to cite: Smith, T. and Bookhagen, B.: Climatic and Biotic Controls on Topographic Asymmetry at the Global Scale, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9758, https://doi.org/10.5194/egusphere-egu21-9758, 2021.