SM2.2 EDI

The vast majority of all telecommunications data (99%) transit through submarine and land-based fibre-optic cables. Global networks of cables encircle the Earth and cover the most remote regions of the continents and oceans. At the same time fibre-optic cables are being used as distributed sensors to measure temperature or strain for a variety of objectives (e.g. fault detect) and environments (e.g. land, marine). Consequently, fibre technologies are becoming a standard tool for crustal exploration and seismic monitoring.

In recent years there have been significant breakthroughs in the use of fibre-optic sensing techniques developed to interrogate cables at very high precision over very large distances both on land and at sea, in boreholes and at the surface. For example, laser reflectometry using DAS (Distributed Acoustic Sensing) on both dedicated experimental and commercial fiber optic cables have successfully detected a variety of signals including microseism, local and teleseismic earthquakes, volcanic events, ocean dynamics, etc. Other laser reflectometry techniques have long been used for the monitoring of large-scale engineering infrastructures (dams, tunnels, bridges, pipelines, etc.). Additionally, fibre-optic technologies have also been applied to natural hazard studies on land (for e.g. monitoring landslides or sinkholes), where in the case of cities, signals of cars can be exploited for exploration, allowing new approaches for urban seismic hazard characterisation.

We welcome contributions that involve the application of fiber-optic cables or sensors in seismology, geodesy, geophysics, natural hazards, oceanography, urban environment, geothermal application, etc. with an emphasis on laboratory studies, large-scale field tests and modelling.

Co-organized by CR2/ERE6/NH6
Convener: Shane Murphy | Co-conveners: Gilda Currenti, Marc-Andre Gutscher, Philippe Jousset, Zack SpicaECSECS

The vast majority of all telecommunications data (99%) transit through submarine and land-based fibre-optic cables. Global networks of cables encircle the Earth and cover the most remote regions of the continents and oceans. At the same time fibre-optic cables are being used as distributed sensors to measure temperature or strain for a variety of objectives (e.g. fault detect) and environments (e.g. land, marine). Consequently, fibre technologies are becoming a standard tool for crustal exploration and seismic monitoring.

In recent years there have been significant breakthroughs in the use of fibre-optic sensing techniques developed to interrogate cables at very high precision over very large distances both on land and at sea, in boreholes and at the surface. For example, laser reflectometry using DAS (Distributed Acoustic Sensing) on both dedicated experimental and commercial fiber optic cables have successfully detected a variety of signals including microseism, local and teleseismic earthquakes, volcanic events, ocean dynamics, etc. Other laser reflectometry techniques have long been used for the monitoring of large-scale engineering infrastructures (dams, tunnels, bridges, pipelines, etc.). Additionally, fibre-optic technologies have also been applied to natural hazard studies on land (for e.g. monitoring landslides or sinkholes), where in the case of cities, signals of cars can be exploited for exploration, allowing new approaches for urban seismic hazard characterisation.

We welcome contributions that involve the application of fiber-optic cables or sensors in seismology, geodesy, geophysics, natural hazards, oceanography, urban environment, geothermal application, etc. with an emphasis on laboratory studies, large-scale field tests and modelling.