TS7.11

EDI
The Caledonian orogen of the North Atlantic region: a natural laboratory for studying tectonic processes

The Caledonian mountain belt represents a world-class example of a deeply denudated Himalayan-style orogen. The exposed crustal sections allow the study of all stages of the Wilson cycle and may contribute to our understanding of many fundamental processes in Earth Sciences, including (1) continental-rifting, break-up and ocean formation, (2) subduction, (3) marginal basin formation, (4) arc-continent and continental collisions, (5) (U)HP metamorphism, (6) orogenic wedge formation and dynamics, (7) the formation and evolution of crustal-scale shear zones, (8) fluid-rock interactions, (9) ductile and brittle deformation mechanisms, and (10) the dynamics of late- to post-orogenic extension and deep crustal exhumation.

This session aims to bring together scientists studying rocks and geological processes from all stages of the Caledonian Wilson cycle, i.e. from rifting to collision and post-orogenic extension, and welcomes sedimentological, petrological, geochemical, geochronological, geophysical, structural, and modelling contributions that help to improve our understanding of the Caledonides and mountain belts in general.

Co-organized by GMPV11
Convener: Jaroslaw Majka | Co-conveners: Deta Gasser, Johannes Jakob, Holger Stunitz
vPICO presentations
| Thu, 29 Apr, 15:30–17:00 (CEST)

vPICO presentations: Thu, 29 Apr

Chairpersons: Jaroslaw Majka, Deta Gasser, Johannes Jakob
15:30–15:35
The Appalachians, British Caledonides and their links to the Scandinavian Caledonides
15:35–15:40
|
EGU21-10080
|
ECS
|
solicited
|
Highlight
Joseph P. Gonzalez, Suzanne L. Baldwin, Jay B. Thomas, William O. Nachlas, Paul G. Fitzgerald, and Pierre Lanari

The Caledonian orogen formed following Paleozoic subduction of the Iapetus Ocean and preserves evidence of ultrahigh-pressure (UHP) metamorphism and exhumation of crustal rocks from mantle depths. The Appalachian orogen similarly formed in the Paleozoic following subduction of Iapetus Ocean crust, but evidence for (U)HP metamorphism in exhumed Appalachian rocks has been challenging to identify. We present results from a metapelite from high-pressure rocks of the Tillotson Peak Complex in the northern Appalachians, which formed during the middle-Ordovician Taconic orogeny. This sample contained mm-cm scale garnet porphyroblasts that host abundant mineral inclusions. Confocal Raman microspectroscopy of inclusions in the rims of a garnet porphyroblast identified relic coesite, preserved as a bi-mineralic inclusion composed of coesite in α-quartz. Raman depth profiling and 2-dimensional mapping indicate the relic coesite is ~10 μm3, suggesting that mineralogical evidence of UHP metamorphism in the Appalachians may be preserved only as μm-scale inclusions contained in polymetamorphosed rocks. We applied quantitative WDS X-ray maps acquired with electron microprobe, quartz-in-garnet elastic thermobarometry, and Zr-in-rutile trace element thermometry to further constrain the metamorphic history of the coesite-bearing metapelite. Garnet zoning patterns in conjunction with elastic and trace element thermobarometry applied to co-entrapped mineral inclusions suggest that garnet nucleated at 14-15.5 kbar and 420-520 °C, and continuously crystallized to 15-19.5 kbar and 470-560 °C during subduction zone metamorphism. Peak metamorphic conditions based on the stability field of coesite and on Zr-in-rutile thermometry from inclusions in the garnet rims suggest UHP metamorphism at >28 kbar and 530 °C. UHP metamorphism of pelitic sediments within the Taconic paleo-subduction zone invite comparisons with similar UHP rocks in the Caledonian orogeny. Future studies of UHP metamorphism in the Appalachian orogen will focus on constraining: 1) the spatial and temporal scales of UHP metamorphism, 2) the retrograde/exhumation P–T path of the coesite-bearing metapelite, and 3) the P–T history of other nearby metamorphic units, such as the Tillotson peak metabasites, to evaluate if these units shared a similar metamorphic history.

How to cite: Gonzalez, J. P., Baldwin, S. L., Thomas, J. B., Nachlas, W. O., Fitzgerald, P. G., and Lanari, P.: Petrologic constraints on subduction zone metamorphism from a coesite-bearing metapelite in the Northern Appalachian Orogen, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10080, https://doi.org/10.5194/egusphere-egu21-10080, 2021.

15:40–15:42
|
EGU21-6526
|
ECS
Lewis Evason, Anna Bird, Eddie Dempsey, Kit Hardman, Martin Smith, and Rob Strachan

The Grampian Shear Zone (GSZ) represents a highly deformed tectonostratigraphic contact between the Proterozoic metamorphic rocks of the Dalradian Group from the underlying high grade metamorphic Neoproterozoic rocks of the Badenoch Group within the Grampian Highlands. The nature (tectonic suture or palaeo-unconformity), age and structure of the GSZ and indeed the underling Badenoch Group are poorly constrained. Previous studies of the GSZ and synkinematic (intruded during shearing) pegmatites found therein, yielded metamorphic/deformation (and magmatic) ages ranging from c.a. 808 to 440 M. This study reinvestigates this shearzone using in-situ (within section) petrochonological analysis on a range of U-Pb and Rb-Sr chronometers – Monazite, zircon, titanite, rutile and mica. Carrying out this analysis in-situ and using a variety of minerals allows us to directly date deformation fabrics over a wide range of deformation temperatures, giving us a far more detailed picture of the events recorded within these rocks. Large monazite grains (≥100μm) were mapped using in-situ LA-ICP-MS to show within grain variation of major elements and REEs. Monazite U-Pb spot analysis from the GSZ has yielded ages ranging from 784.11 ± 1.2Ma to 442.58 ± 0.58Ma. The same analysis was performed on a sample from the Grampian group which yielded an age of 441.34 ± 037Ma. In addition to this monazite data, in-situ U-Pb Titanite analysis from the Badenoch Group gave ages of 526.96 ± 1.33 Ma from a metabasite sample, with a metasedimentary sample giving a range of titanite U Pb ages from 540 to 460Ma. These age ranges show that the Badnoch Group and the GSZ have recorded a complex polyorogenic history relative to the “simple” overlying Dalradian metasediments. We propose that the Grampian Shear Zone represents a deep-seated Knoydartian (808 to 784Ma) age shear zone within the meso-Neoproterozoic Badenoch Group. This shear zone was then reactivated during the Grampian phase of the Caledonian Orogeny resulting in the tectonic emplacement of the Dalradian metasediments above the Badenoch group.

How to cite: Evason, L., Bird, A., Dempsey, E., Hardman, K., Smith, M., and Strachan, R.: Unravelling the enigmatic Grampian Shear Zone: In-situ monazite and titanite U-Pb analysis of the juxtaposed Badenoch and Grampian Groups, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6526, https://doi.org/10.5194/egusphere-egu21-6526, 2021.

15:42–15:44
|
EGU21-722
|
ECS
Timothy Armitage, Robert Holdsworth, Robin Strachan, Thomas Zach, Diana Alvarez-Ruiz, and Eddie Dempsey

Ductile shear zones are heterogeneous areas of strain localisation which often display variation in strain geometry and combinations of coaxial and non-coaxial deformation. One such heterogeneous shear zone is the c. 2 km thick Uyea Shear Zone (USZ) in northwest Mainland Shetland (UK), which separates variably deformed Neoarchaean orthogneisses in its footwall from Neoproterozoic metasediments in its hanging wall (Fig. a). The USZ is characterised by decimetre-scale layers of dip-slip thrusting and extension, strike-slip sinistral and dextral shear senses and interleaved ultramylonitic coaxially deformed horizons. Within the zones of transition between shear sense layers, mineral lineations swing from foliation down-dip to foliation-parallel in kinematically compatible, anticlockwise/clockwise-rotations on a local and regional scale (Fig. b). Rb-Sr dating of white mica grains via laser ablation indicates a c. 440-425 Ma Caledonian age for dip-slip and strike-slip layers and an 800 Ma Neoproterozoic age for coaxial layers. Quartz opening angles and microstructures suggest an upper-greenschist to lower-amphibolite facies temperature for deformation. We propose that a Neoproterozoic, coaxial event is overprinted by Caledonian sinistral transpression under upper greenschist/lower amphibolite facies conditions. Interleaved kinematics and mineral lineation swings are attributed to result from differential flow rates resulting in vertical and lateral extrusion and indicate regional-scale sinistral transpression during the Caledonian orogeny in NW Shetland. This study highlights the importance of linking geochronology to microstructures in a poly-deformed terrane and is a rare example of a highly heterogeneous shear zone in which both vertical and lateral extrusion occurred during transpression.