GD7.3 EDI

The dynamics and evolution of Earth’s interior are controlled by a spectrum of processes covering a wide range of length (i.e. from kilometers down toa few ångströms) and time scales (i.e. from billions of years down to picoseconds). Key planetary processes as plate tectonics, mantle convection, and the growth of the inner core are in many ways governed by the underlying transport properties, deformation mechanisms, and the crystal chemistry of the rock.

Coupling these multi-scale processes remains one of the fundamental challenges in the Geosciences. It requires the ability to translate physics from one scale to another (upscaling and downscaling), yet countless complexities and feed-backs play out between them. Ideally, the relationships between crystal chemistry, microstructures, and deformation mechanisms should be incorporated in models of large-scale phenomena such as shear zones, plate boundaries, and mantle convection.

In this session, we invite contributions on multi-scale geodynamics from observations, experiments, and modelling. Topics may include, but are not restricted to, atomistic simulations, solid-state deformation experiments, (micro-)structural analysis of minerals and rocks, and dynamic modelling of Earth’s interior. Ultimately, we aim to create new paths for future research concerning multi-scale dynamics of planetary interiors.

Co-organized by GMPV5
Convener: Anna GülcherECSECS | Co-conveners: Jac van DrielECSECS, Sebastian RitterbexECSECS, Patrick Cordier, John Hernlund

The dynamics and evolution of Earth’s interior are controlled by a spectrum of processes covering a wide range of length (i.e. from kilometers down toa few ångströms) and time scales (i.e. from billions of years down to picoseconds). Key planetary processes as plate tectonics, mantle convection, and the growth of the inner core are in many ways governed by the underlying transport properties, deformation mechanisms, and the crystal chemistry of the rock.

Coupling these multi-scale processes remains one of the fundamental challenges in the Geosciences. It requires the ability to translate physics from one scale to another (upscaling and downscaling), yet countless complexities and feed-backs play out between them. Ideally, the relationships between crystal chemistry, microstructures, and deformation mechanisms should be incorporated in models of large-scale phenomena such as shear zones, plate boundaries, and mantle convection.

In this session, we invite contributions on multi-scale geodynamics from observations, experiments, and modelling. Topics may include, but are not restricted to, atomistic simulations, solid-state deformation experiments, (micro-)structural analysis of minerals and rocks, and dynamic modelling of Earth’s interior. Ultimately, we aim to create new paths for future research concerning multi-scale dynamics of planetary interiors.