EGU22-1014, updated on 27 Mar 2022
https://doi.org/10.5194/egusphere-egu22-1014
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Automatic detection of the electron density from the WHISPER instrument onboard CLUSTER II

Emmanuel De Leon, Nicolas Gilet, Xavier Vallières, Luca Bucciantini, Pierre Henri, and Jean-Louis Rauch
Emmanuel De Leon et al.
  • LPC2E - CNRS, ORLEANS, France (emmanuel.de-leon@cnrs-orleans.fr)

The Waves of HIgh frequency and Sounder for Probing Electron density by Relaxation
(WHISPER) instrument, is part of the Wave Experiment Consortium (WEC) of the CLUSTER II
mission. The instrument consists of a receiver, a transmitter, and a wave spectrum
analyzer. It delivers active (when in sounding mode) and natural electric field spectra. The
characteristic signature of waves indicates the nature of the ambient plasma regime and, combined
with the spacecraft position, reveals the different magnetosphere boundaries and regions. The
thermal electron density can be deduced from the characteristics of natural waves in natural mode
and from the resonances triggered in sounding mode, giving access to a key parameter of scientific
interest and major driver for the calibration of particles instrument.
Until recently, the electron density derivation required a manual time/frequency domain
initialization of the search algorithms, based upon visual inspection of WHISPER active and natural
spectrograms and other datasets from different instruments onboard CLUSTER.
To automate this process, knowledge of the region (plasma regime) is highly desirable. A Multi-
Layer Perceptron model has been implemented for this purpose. For each detected region, a GRU,
recurrent network model combined with an ad-hoc algorithm is then used to determine the electron
density from WHISPER active spectra. These models have been trained using the electron density
previously derived from various semi-automatic algorithms and manually validated, resulting in an
accuracy up to 98% in some plasma regions. A production pipeline based on these models has been
implemented to routinely derive electron density, reducing human intervention up to 10 times. Work
is currently ongoing to create some models to process natural measurements where the data volume
is much higher and the validation process more complex. These models of electron density
automated determination will be useful for future other space missions.

How to cite: De Leon, E., Gilet, N., Vallières, X., Bucciantini, L., Henri, P., and Rauch, J.-L.: Automatic detection of the electron density from the WHISPER instrument onboard CLUSTER II, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1014, https://doi.org/10.5194/egusphere-egu22-1014, 2022.

Displays

Display file