EGU22-10363
https://doi.org/10.5194/egusphere-egu22-10363
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Understanding and reducing surface biases over the Southern Ocean in the FOCI climate model

Joakim Kjellsson, Sebastian Wahl, Torge Martin, and Wonsun Park
Joakim Kjellsson et al.
  • GEOMAR Kiel, Germany (jkjellsson@geomar.de)

We examine the current surface biases in sea-surface temperature (SST), sea-ice fraction, and winds over the Southern Ocean in the FOCI climate model and demonstrate various methods to reduce them. We examine and tune biases in both atmosphere-only simulations with ECHAM6 and OpenIFS 43r3 and coupled models FOCI (ECHAM6+NEMO) and FOCI-OpenIFS (OpenIFS + NEMO). Over the Southern Ocean both coupled climate models suffer from a warm SST bias, low sea-ice fraction, and surface westerlies with a maximum too far north. We explore how modifying ocean mixing parameters, air-sea coupling frequency and ice model parameters impacts surface biases. 

Shortening coupling frequency in the FOCI model from 3-hourly to hourly reduces both the warm SST bias and the low sea-ice fraction bias, while the northward bias of the westerly wind maximum is largely unchanged. This suggests that the SST and sea-ice fraction biases are related to a lack of wind gustiness and not the biases in mean the winds. Similarly, reducing the horizontal tracer diffusion in the ocean from 600 m2/s to 300 m2/s also reduces the warm SST bias and the low sea-ice fraction bias. The cooling of the Southern Ocean surface is likely due to a reduced vertical heat transport by the tracer diffusion, which is along iso-neutral surfaces. Combined, both reducing the coupling frequency and re-tuning the horizontal mixing parameters acts to reduce the Southern Ocean surface biases more than either one alone. 

The two coupled models, FOCI and FOCI-OpenIFS, share identical ocean model configurations, NEMO ORCA05, but produces warm SST biases in different ways. OpenIFS suffers from a strong cloud radiative forcing bias which is not existent in ECHAM. Hence, reducing the SST and sea-ice fraction biases in FOCI-OpenIFS requires improvements in the cloud scheme rather than tuning oceanic mixing parameters. 

How to cite: Kjellsson, J., Wahl, S., Martin, T., and Park, W.: Understanding and reducing surface biases over the Southern Ocean in the FOCI climate model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10363, https://doi.org/10.5194/egusphere-egu22-10363, 2022.