Decontamination and subsequent natural restoration processes impact on terrestrial systems in Niida River Catchment in Fukushima
- 1University of Tsukuba, Center for Research in Isotopes and Environmental Dynamics, Tsukuba, Japan (onda@geoenv.tsukuba.ac.jp)
- 2Institute of Radioactivity, Fukushima University
- 3National Institute of Technology, Tsuyama College
For the Fukushima region in Japan, the large-scale decontamination in the catchments needed to require more attention because of their possible consequence in altering particulate Cs-137 flux from the terrestrial environment to the ocean. Here, combining the high-resolution satellite dataset and concurrent river monitoring results, we quantitively assess the impacts of land cover changes in large-area decontaminated regions on river suspended sediment (SS) and particulate Cs-137 dynamics during 2013-2018. We find that the decontaminated regions’ erodibility dramatically enhanced during the decontamination stage but rapidly declined in the subsequent natural-restoration stage. River SS dynamics show linear response to these land cover changes, where annual SS load (normalized by water discharge) at the end of decontamination increased by over 300% than pre-decontamination and decreased about 48% at the beginning of natural restoration. Fluctuations in particulate Cs-137 concentrations well reflect the process of sediment source alternation due to land cover changes in decontaminated regions. The “Fukushima decontamination experiment” can reveal the dramatic impact of decontamination-natural restoration processes, which highlights the need for quantitatively assessing human impacts on land use and resultant alternation in sediment transfer patterns in large scale catchments.
How to cite: Onda, Y., Bin, F., Wakiyama, Y., Taniguchi, K., Hashimoto, A., and Zhang, Y.: Decontamination and subsequent natural restoration processes impact on terrestrial systems in Niida River Catchment in Fukushima, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10713, https://doi.org/10.5194/egusphere-egu22-10713, 2022.