EGU22-11443
https://doi.org/10.5194/egusphere-egu22-11443
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A seasonal climatology of the upper ocean pycnocline

Guillaume Sérazin, Anne-Marie Tréguier, and Clément de Boyer Montégut
Guillaume Sérazin et al.
  • Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Oceanographie Physique et Spatiale, IUEM, Brest, France (guillaume.serazin@univ-brest.fr)

Climatologies of the mixed layer depth have been provided using several definitions based on temperature/density thresholds or hybrid approaches. The upper ocean pycnocline (UOP) that sits below the mixed layer base, sometimes referred to as the transition layer or as the seasonal pycnocline, remains poorly characterised though it is an ubiquitous feature of the ocean surface layer. The UOP often consists in a rapid change in density with depth and enhanced vertical shear that connects the well-mixed surface layer to the stratified ocean interior. The UOP is important for the ventilation of the ocean as it represents a barrier to mixing between the upper ocean and the ocean interior.

Available hydrographic profiles (e.g., Argo, CTD on marine mammals) provide near-global coverage of the world's oceans and allow the characterisation of spatial and seasonal variations of the upper ocean vertical stratification, including the UOP. Based on these profiles, we estimate the depth, thickness and intensity of the UOP, and assess when and where the UOP can be considered as a layer with constant thickness. We provide monthly maps of the UOP complementing the available MLD climatologies and we compare the UOP characteristics with the depth and stratification of the mixed layer. We  aim at assessing the UOP intensity in winter and spring when the stratification is usually weak and submesoscale vertical motions can penetrate below the mixed layer base. During these seasons, the UOP intermittency must be taken into account because restratification may occur with intermittent events.

How to cite: Sérazin, G., Tréguier, A.-M., and de Boyer Montégut, C.: A seasonal climatology of the upper ocean pycnocline, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11443, https://doi.org/10.5194/egusphere-egu22-11443, 2022.

Displays

Display file