EGU22-11502
https://doi.org/10.5194/egusphere-egu22-11502
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Retrospective assessment of 14C aquatic and atmospheric releases from Ignalina Nuclear Power Plant due to exploitation of two RBMK-1500 type reactors

Evaldas Maceika, Rūta Barisevičiūtė, Laurynas Juodis, Algirdas Pabedinskas, Žilvinas Ežerinskis, Justina Šapolaitė, Laurynas Butkus, and Vidmantas Remeikis
Evaldas Maceika et al.
  • State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania

Considerable amounts of 14C in the nuclear reactor are generated by neutrons. It accumulates in reactor components, coolant, and cleaning systems, and partly is released into the environment as gaseous releases and as liquid effluents. Two RBMK-1500 type reactors were exploited at Ignalina NPP (Lithuania) 1983-2009. Releases from NPP radiocarbon accumulated in local biosphere by photosynthesis, including terrestrial and aquatic media, as INPP used Lake Drūkšiai as a cooling pond

Temporal variation of 14C in lake ecosystem was examined by analyzing measured radiocarbon concentration of the organic compounds (Alkali soluble-AS) and alkali insoluble-AIS) derived from the layers of the Drūkšiai lake bottom sediments. The lake sediment cores were sampled in 2013 and 2019, sliced to 1 cm layers and 14C concentration was measured of every layer. AS and AIS organic fractions of sediment samples were extracted by using the acid-base-acid method.

Tree ring cores were collected from Pinus Sylvestris pines around the Ignalina NPP site at different directions and distances. Cellulose extraction was performed with BABAB (base-acid-base-acid-bleach) procedure, and all samples were graphitized and measured by a single state accelerator mass spectrometry at Vilnius Radiocarbon facility. Tree rings 14C concentration analysis provides atmospheric radiocarbon concentration in locations around the nuclear object. This analysis provides an opportunity to evaluate the impact of a nuclear object on water and terrestrial ecosystems.

The results showed a pronounced increase of 14C above background up to 17.8 pMC in the tree rings during INPP exploitation as well during decommission (since 2010) periods. According to the recorded data in 2004-2017 of the local Ignalina NPP meteorological station, the prevailing wind direction was towards the North and East during warm and light time periods. The radiocarbon released from the INPP stack dilutes when it travels in a downwind direction from the INPP. However, even 6.6 km away from the INPP, the impact of the power plant is still clearly visible. By using our created Gaussian dispersion model, the estimated annual emissions of 14C activity from the Ignalina NPP to the air vary from year to year. When only the 1st INPP reactor Unit was operating in 1985-1987, average emissions were 1.2 TBq/year. Emissions almost doubled to 2.1 TBq/year in 1988, when the 2nd Unit became operational. Later, emission levels increased. It could be explained by the large amount of 14C accumulating in the graphite of the RBMK reactor and its gradual release.

14C concentration profile analysis of the lake bottom sediments core revealed a significant impact of the Ignalina NPP on the Drūkšiai lake ecosystem. An increase of 14C concentration in the layers of bottom sediments by 80 pMC in the AS fraction and only by 9 pMC in the AIS fraction was observed, corresponding to the period about years of 1998-2003. The maximum peak in AS of 189 pMC was reached approximately in 2001, followed by gradual lake recovery. This radiocarbon peak in the lake represents a large single one-time pollution release. The critical period was in 2000s when maintenance works of the reactors were performed.

How to cite: Maceika, E., Barisevičiūtė, R., Juodis, L., Pabedinskas, A., Ežerinskis, Ž., Šapolaitė, J., Butkus, L., and Remeikis, V.: Retrospective assessment of 14C aquatic and atmospheric releases from Ignalina Nuclear Power Plant due to exploitation of two RBMK-1500 type reactors, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11502, https://doi.org/10.5194/egusphere-egu22-11502, 2022.

Displays

Display link