EGU22-11851, updated on 04 Dec 2023
https://doi.org/10.5194/egusphere-egu22-11851
EGU General Assembly 2022
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-decadal shoreline change in coastal Natural World Heritage Sites – a global assessment

Salma Sabour1, Sally Brown2, Robert J. Nicholls3,4, Ivan D. Haigh5, and Arjen P. Luijendijk6
Salma Sabour et al.
  • 1University of Southampton, Southampton, United Kingdom of Great Britain – England, Scotland, Wales (salma.sabour@centraliens.net)
  • 2Department of Life and Environmental Sciences, Bournemouth University, Fern Barrow, Bournemouth BH12 5BB, United Kingdom
  • 3Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
  • 4Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
  • 5School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom
  • 6Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands Deltares, Delft, The Netherlands

Natural World Heritage Sites (NWHS), which are of Outstanding Universal Value, are increasingly threatened by natural and anthropogenic pressures. This is especially true for coastal NWHS, which are additionally subject to erosion and flooding. This study assesses shoreline change from 1984 to 2016 within the boundaries of 67 designated sites, providing a first global consistent assessment of its drivers. It develops a transferable methodology utilising new satellite-derived global shoreline datasets, which are classified based on linearity of change against time and compared with global datasets of geomorphology (topography, land cover, coastal type, and lithology), climate variability and sea-level change. Significant shoreline change is observed on 14% of 52 coastal NWHS shorelines that show the largest recessional and accretive trends (means of -3.4 m yr-1 and 3.5 m yr-1, respectively). These rapid shoreline changes are found in low-lying shorelines (< 1 m elevation) composed of unconsolidated sediments in vegetated tidal coastal systems (means of -7.7 m yr-1 and 12.5 m yr-1), and vegetated tidal deltas at the mouth of large river systems (means of -6.9 and 11 m yr-1). Extreme shoreline changes occur as a result of redistribution of sediment driven by a combination of geomorphological conditions with (1) specific natural coastal morphodynamics such as opening of inlets (e.g. Río Plátano Biosphere Reserve) or gradients of alongshore sediment transport (e.g. Namib Sea) and (2) direct or indirect human interferences with natural coastal processes such as sand nourishment (e.g. Wadden Sea) and damming of river sediments upstream of a delta (e.g. Danube Delta). The most stable soft coasts are associated with the protection of coral reef ecosystems (e.g. Great Barrier Reef) which may be degraded/destroyed by climate change or human stress in the future. A positive correlation between shoreline retreat and local relative sea-level change was apparent in the Wadden Sea. However, globally, the effects of contemporary sea-level rise are not apparent for coastal NWHS, but it is a major concern for the future reinforcing the shoreline dynamics already being observed due to other drivers. Hence, future assessments of shoreline change need to account of other drivers of coastal change in addition to sea-level rise projections. In conclusion, extreme multi-decadal linear shoreline trends occur in coastal NWHS and are driven primarily by sediment redistribution. Future exacerbation of these trends may affect heritage values and coastal communities. Thus shoreline change should be considered in future management plans where necessary. This approach provides a consistent method to assess NWHS which can be repeated and help steer future management of these important sites.

How to cite: Sabour, S., Brown, S., Nicholls, R. J., Haigh, I. D., and Luijendijk, A. P.: Multi-decadal shoreline change in coastal Natural World Heritage Sites – a global assessment, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11851, https://doi.org/10.5194/egusphere-egu22-11851, 2022.