Method development for on-site freshwater analysis with pre-concentration of nickel via ion-exchange resins embedded in a cafetière system and paper-based analytical devices for readout
- 1Department of Chemistry and Biochemistry, University of Hull, Hull, United Kingdom
- 2Department of Biological and Marine Science, University of Hull, Hull, United Kingdom
- 3Department of Geography, Geology, and Environment, University of Hull, Hull, United Kingdom
- 4Department of Materials and Environmental Chemistry, Stockholm University, Sweden
Keywords: preconcentration, heavy metal, cafetiere, citizen science, paper-based microfluidics
Heavy-metal analysis of water samples using microfluidics paper-based analytical devices (µPAD) with colourimetric readout is of great interest due to its simplicity, affordability and potential for Citizen Science-based data collection [1]. However, this approach is limited by the relatively poor sensitivity of the colourimetric substrates, typically achieving detection within the mg L-1 range, whereas heavy-metals exist in the environment at <μg L-1 quantities [2]. Preconcentration is commonly used when analyte concentration is below the analytical range, but this typically requires laboratory equipment and expert users [3]. Here, we are developing a simple method for pre-concentration of heavy metals, to be integrated with a µPAD workflow that would allow Citizen Scientists to carry out pre-concentration as well as readout on-site.
The filter mesh from an off-the-shelf cafetière (350 mL) was replaced with a custom-made bead carrier basket, laser cut in PMMA sheet featuring >500 evenly spread 100 µm diameter holes. This allowed the water sample to pass through the basket and mix efficiently with the 2.6 g ion-exchange resin beads housed within (Lewatit® TP207, Ambersep® M4195, Lewatit® MonoPlus SP 112). An aqueous Ni2+ sample (0.3 mg L-1, 300 mL) was placed in the cafetiere and the basket containing ion exchange material was moved up and down for 5 min to allow Ni2+ adsorption onto the resin. Initial investigations into elution with a safe, non-toxic eluent focused on using NaCl (5 M). These were carried out by placing the elution solution into a shallow dish and into which the the resin containing carrier basket was submerging. UV/vis spectroscopy via a colourimetric reaction with nioxime was used to monitor Ni2+ absorption and elution.
After 5 min of mixing it was found that Lewatit® TP207 and Ambersep® M4195 resins adsorbed up to 90% of the Ni2+ ions present in solution and the Lewatit® MonoPlus SP 112 adsorbed up to 60%. However, the Lewatit® MonoPlus SP 112 resin performed better for elution with NaCl. Initial studies showed up to 30% of the Ni2+ was eluted within only 1 min of mixing with 10 mL 5 M NaCl.
Using a cafetière as pre-concentration vessel coupled with non-hazardous reagents in the pre-concentration process allows involvement of citizen scientists in more advanced environmental monitoring activities that cannot be achieved with a simple paper-based sensor alone. Future work will investigate the user-friendliness of the design by trialling the system with volunteers and will aim to further improve the trapping and elution efficiencies.
References:
- Almeida, M., et al., Talanta, 2018, 177, 176-190.
- Lace, A., J. Cleary, Chemosens., 2021. 9, 60.
- Alahmad, W., et al.. Biosens. Bioelectron., 2021. 194, 113574.
How to cite: Sari, M., Richardson, S., Mayes, W., Lorch, M., and Pamme, N.: Method development for on-site freshwater analysis with pre-concentration of nickel via ion-exchange resins embedded in a cafetière system and paper-based analytical devices for readout, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11892, https://doi.org/10.5194/egusphere-egu22-11892, 2022.