Assessment of 10m Spectral and Broadband Surface Albedo Products from Sentinel-2 and MODIS data
- 1University College London, Mullard Space Science Laboratory, Space and Climate Physics, Holmbury St Mary, United Kingdom of Great Britain – England, Scotland, Wales (j.muller@ucl.ac.uk)
- 2European Commission, Joint Research Centre (JRC), via E. Fermi 2749, I-21027 Ispra (VA), Italy
- 3Remote Sensing Centre for Earth System Research, Leipzig University, 04103 Leipzig, Germany
- 4Hummingbird Technologies Ltd., Aviation House, 125 Kingsway, Holborn, London WC2B 6NH, UK
In Song et al. (2021) [1] a framework for the retrieval of 10 m and 20 m spectral and 20 m broadband surface albedo products was described. This framework consists of four modules: 1) a machine learning based cloud detection method, Spectral ENcoder for SEnsor Independence (SEnSeI) [2]. 2) an advanced atmospheric correction model Sensor Invariant Atmospheric Correction (SIAC) [3]. 3) an endmember-based class extraction method, which enables the retrieval of 10 m/20 m albedos based on a regression between the MODIS Bidirectional Reflectance Distribution Function (BRDF) derived surface albedo and Sentinel-2 surface reflectance resampled to MODIS resolution. 4) a novel method of using the MODIS BRDF prior developed within the QA4ECV programme (http://www.qa4ecv.eu/) to fill in the gaps in a time series caused by cloud obscuration. We describe how ~1100 scenes were processed over 22 Sentinel-2 tiles at the STFC JASMIN facility. These tiles spanned different 4 month time periods for different users with a maximum of 22 dates per tile. These tiles cover Italy, Germany, South Africa, South Sudan, Ukraine and UK for 6 different users. For the Italian site, a detailed analysis was performed of the impact of this hr-albedo on the fAPAR and LAI derived using TIP [5] whilst a second user employed a method described in [6] to compare MODIS and Sentinel-2 and a third user looked at the impact on agricultural yield forecasting. Lessons learnt from these different applications will be described including both the opportunities and areas where further work is required to improve the data quality.
We thank ESA for their support through ESA-HR-AlbedoMap: Contract CO 4000130413 and the STFC JASMIN facility and in particular Victoria Bennett for their assistance.
[1] Song, R., Muller, J.-P., Francis, A., A Method of Retrieving 10-m Spectral Surface Albedo Products from Sentinel-2 and MODIS data," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 2381-2384, doi: 10.1109/IGARSS47720.2021.9554356
[2] Francis, A., Mrziglod, J., Sidiropoulos, P. and J.-P. Muller, "SEnSeI: A Deep Learning Module for Creating Sensor Independent Cloud Masks," in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2021.3128280.
[3] Feng et al. (2019) A Sensor Invariant Atmospheric Correction: Sentinel-2/MSI AND Landsat 8/OLI https://doi.org/10.31223/osf.io/ps957.
[4] Song, R.; Muller, J.-P.; Kharbouche, S.; Yin, F.; Woodgate, W.; Kitchen, M.; Roland, M.; Arriga, N.; Meyer, W.; Koerber, G.; Bonal, D.; Burban, B.; Knohl, A.; Siebicke, L.; Buysse, P.; Loubet, B.; Leonardo, M.; Lerebourg, C.; Gobron, N. Validation of Space-Based Albedo Products from Upscaled Tower-Based Measurements Over Heterogeneous and Homogeneous Landscapes. Remote Sensing 2020, 12, 1–23.doi: 10.3390/rs12050833
[5] Gobron, N.; Marioni, M.; Muller, J.-P.; Song, R.; Francis, A. M.; Feng, Y.; Lewis, P. ESA Sentinel-2 Albedo Case Study: FAPAR and LAI downstream products.; 2021; pp. 1–30. JRC TR (in press)
[6] Peng, J.; Kharbouche, S.; Muller, J.-P.; Danne, O.; Blessing, S.; Giering, R.; Gobron, N.; Ludwig, R.; Mueller, B.; Leng, G.; Lees, T.; Dadson, S. Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework. J Hydrol 2020, 580, 124245.
How to cite: Muller, J.-P., Song, R., Francis, A., Gobron, N., Peng, J., and Torbick, N.: Assessment of 10m Spectral and Broadband Surface Albedo Products from Sentinel-2 and MODIS data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12092, https://doi.org/10.5194/egusphere-egu22-12092, 2022.