EGU22-12821
https://doi.org/10.5194/egusphere-egu22-12821
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Spaceborne Water Mass formation detectability and temporal evolution 

Roberto Sabia2, Jessica Caughtry1, Diego Fernandez-Prieto1, and Aqeel Piracha3
Roberto Sabia et al.
  • 1European Space Agency (ESA), Frascati, Italy.
  • 2Telespazio-UK for European Space Agency (ESA), Frascati, Italy
  • 3Barcelona Expert Centre, ICM-CSIC, Barcelona, Spain.

Remote sensing measurements of sea surface salinity (SSS) and sea surface temperature (SST) have been used to generate satellite-derived surface T-S diagrams [1], and to compute surface density flux, spiciness and water masses (WM) formation rates and extension [2].

More recently [3], this framework has been expanded in several directions, ranging from the extension of the studied basins and their temporal span, to the inclusion of a wider pool of source datasets. Satellite uncertainties have also been propagated to the final estimates (including also heat and freshwater fluxes uncertainties) of water masses formation rates and location. Several water masses have been characterized, showing a remarkable consistency with literature estimates.

The current efforts are devoted to additional investigation pathways. Firstly, it has been studied the impact on the actual estimates of water masses formation of satellite inputs at variable spatial (0,5  to 1 ) and temporal (weekly to monthly) scales. Secondly, the temporal evolution of the estimates over a 10-yr-long timespan has been studied, both in the T/S and geographical domains, detecting possible linear trends and anomalies. Lastly, investigation on additional water masses in the Pacific Ocean under the influence of ENSO variability is ongoing.

[1] Sabia R., et al. (2014), A first estimation of SMOS‐based ocean surface T‐S diagrams, J. Geophys. Res. Oceans, 119, 7357–7371.

[2] Sabia R., et al., Variability and Uncertainties in Water Masses Formation Estimation from Space, Ocean Sciences 2016, New Orleans, LA, USA, February 2016.

[3] Piracha A., et al., Satellite-driven estimates of water mass formation and their spatio-temporal evolution, Frontiers in Marine Science, 2019.

How to cite: Sabia, R., Caughtry, J., Fernandez-Prieto, D., and Piracha, A.: Spaceborne Water Mass formation detectability and temporal evolution , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12821, https://doi.org/10.5194/egusphere-egu22-12821, 2022.