Ecohydrological responses to a series of dry years at the TERENO Observatory NorthEast Germany
- 1GFZ German Research Centre for Geosciences, Hydrology, Potsdam, Germany (blume@gfz-potsdam.de)
- 2Chair of Hydrology, Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
Ecohydrological consequences of dry years are difficult to predict. To understand the underlying drivers and responses, extensive monitoring over longer periods of time is a prerequisite. We are here providing an overview of multi-year monitoring of different forest stands in the TERENO Observatory NorthEast Germany. These forest stands include pure oak, beech and pine stands as well as mixed stands and the experimental design also allows the comparison of sites with and without accessibility to groundwater. Monitoring covers a large number of variables with high temporal resolution, such as soil moisture and groundwater dynamics but also sapflow and tree growth. Due to the deep groundwater levels and the high conductivity of the sandy soils, water storage dynamics in the large unsaturated zone and the deeper root zone are of special importance. Soil moisture monitoring therefore extends down to a depth of 2m. We provide an overview of the ecohydrological responses of this forest system to the extreme summer and fall of 2018 as well as the progression in the following years.
How to cite: Blume, T., Güntner, A., Weiler, M., and Heinrich, I.: Ecohydrological responses to a series of dry years at the TERENO Observatory NorthEast Germany, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12864, https://doi.org/10.5194/egusphere-egu22-12864, 2022.