EGU22-13244
https://doi.org/10.5194/egusphere-egu22-13244
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Preliminary study of a new-style terrain disturbance method based on gradient inhomogeneity in convection-allowing scale ensemble prediction system

Chen Chaohui, Li Yi, He Hongrang, Liu Kan, and Jiang Yongqiang
Chen Chaohui et al.
  • Institute of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073

Terrain with different shapes and ground surface properties has extremely complex impacts on atmospheric motion, and the forecast uncertainty and complexity caused by terrain brings great challenges to disaster prevention and mitigation. Therefore, it is essential to design a new-style model topography disturbance model for ensemble prediction system specifically to solve the prediction uncertainty caused by complex terrain. In this paper, on the basis of combing the current models and methods for dealing with different terrain uncertainty, and considering the non-uniformity of terrain gradient, the key element of describing terrain complexity, an orthogonal terrain disturbance method based on terrain gradient is designed and proposed, and the obtained high-resolution orthogonal terrain disturbance is superimposed on the static terrain height of the model to generate different ensemble members, so as to describe the uncertainty in the terrain generation process of high-resolution numerical model. At the same time, a comparative study is carried out with the ensemble forecast of model terrain disturbance between using the new-style method and using different terrain interpolation schemes or smoothing schemes. The preliminary test shows that: first of all, the ensemble dispersion of terrain height disturbance based on the new-style method is closely related to the terrain gradient. The area with small terrain gradient has smaller terrain disturbance ensemble dispersion, while the area with large terrain gradient has larger ensemble dispersion, which shows that the new scheme is more reasonable. Furthermore, compared with the model terrain disturbance schemes with different interpolation or smoothing methods, the dispersion of the new-style method is larger, and the skill of the new-style method becomes more and more obvious with the increase of model resolution. Thirdly, from the comparative study of the forecast effect of high-level and low-level weather elements, the new-style method ensemble forecast has obvious improvement on the forecast effect of low-level variables, especially in areas with complex terrain or large terrain gradient. The possible reason is that the new method can more objectively describe the terrain uncertainty. Fourthly, compared with the ensemble forecast results of different interpolation and smoothing methods, the new-style terrain disturbance scheme can improve the precipitation probability forecast skill and reduce the ensemble average root mean square error, and improve the ensemble average forecast of upper-air elements and near-surface elements. Lastly, the test of the number of ensemble members shows that the prediction effect of new-style terrain disturbance scheme with less members is equivalent or better than that of the interpolation or smoothing terrain disturbance scheme with more members. In summary, the new-style terrain perturbation theory based on terrain gradient in this paper provides a technical reference for the development of complex terrain convection-allowing scale ensemble forecast, which has important theoretical value and application prospect.

Key words: complex terrain,ensemble prediction,convection-allowing scale,topographic perturbation,topographic gradient

How to cite: Chaohui, C., Yi, L., Hongrang, H., Kan, L., and Yongqiang, J.: Preliminary study of a new-style terrain disturbance method based on gradient inhomogeneity in convection-allowing scale ensemble prediction system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13244, https://doi.org/10.5194/egusphere-egu22-13244, 2022.