EGU22-13522
https://doi.org/10.5194/egusphere-egu22-13522
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Time-dependent forcing in the geosciences and in epidemiology

Michael Ghil1,2
Michael Ghil
  • 1Ecole Normale Supérieure, Paris, FRANCE
  • 2University of California at Los Angeles, Los Angeles, USA

For many of us, the Covid-19 pandemic brought long-time scientific interest in epidemiology to the point of involvement. An important aspect of the evolution of acute respiratory epidemics is their seasonal character. Our toolkit for handling seasonal phenomena in the geosciences has increased in the last dozen years or so with the development and application of concepts and methods from the theory of nonautonomous and random dynamical systems (NDSs and RDSs). In this talk, I will briefly:

  • Introduce some elements of these two closely related theories.

  • Illustrate the two with an application to seasonal effects within a chaotic model of the El

    Niño–Southern Oscillation (ENSO).

  • Introduce to a geoscientific audience a simple epidemiological “box” model of the

    Susceptible–Exposed–Infectious–Recovered (SEIR) type.

  • Summarize NDS results for a chaotic SEIR model with seasonal effects.

  • Mention the utility of data assimilation (DA) tools in the parameter identification and

    prediction of an epidemic’s evolution

    References

    - Chekroun, M D, Ghil M, Neelin J D (2018) Pullback attractor crisis in a delay differential ENSO model, in Nonlinear Advances in Geosciences, A. Tsonis (Ed.), Springer, pp. 1–33, doi: 10.1007/978-3-319-58895-7

    - Crisan D, Ghil, M (2022) Asymptotic behavior of the forecast–assimilation process with unstable dynamics, Chaos, in preparation

    - Faranda D, Castillo I P, Hulme O, Jezequel A, Lamb J S, Sato Y, Thompson E L (2020) Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation<? Chaos, 30(5): 051107, doi: 10.1063/5.0009454

    - Ghil, M (2019) A century of nonlinearity in the geosciences. Earth & Space Science 6:1007–1042, doi:10.1029/2019EA000599

    - Kovács, T (2020) How can contemporary climate research help understand epidemic dynamics? Ensemble approach and snapshot attractors. J. Roy. Soc. Interface, 17(173):20200648, doi: 10.1098/rsif.2020.0648

How to cite: Ghil, M.: Time-dependent forcing in the geosciences and in epidemiology, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13522, https://doi.org/10.5194/egusphere-egu22-13522, 2022.