A rapid, low-cost, high-resolution, map-based assessment of the January 15, 2022 tsunami impact on population and buildings in the Kingdom of Tonga
- 1Institute of Geodesy (GIS), University of Stuttgart, Stuttgart, Germany (bruce.thomas@gis.uni-stuttgart.de)
- 2GNS Science, Lower Hutt, New Zealand (j.roger@gns.cri.nz)
- 3Université Lumière Lyon 2, CNRS, Lyon Bron, France (yanni.gunnell@univ-lyon2.fr)
The population and built infrastructure of the Kingdom of Tonga are highly exposed to ocean- and climate-related coastal hazards. The archipelago was impacted on January 15, 2022, by a destructive tsunami caused by the Hunga Tonga-Hunga Ha'apai submarine volcanic eruption. Weeks later, several islands were still cut off from the world, this situation was made worse by covid-19-related international lockdowns and no precise idea of the magnitude and pattern of destruction. Like in most Pacific islands, the Kingdom of Tonga lacks an accurate population and infrastructure database. The occurrence of events such as this in remote island communities highlights the need for (1) precisely knowing the distribution of residential and public buildings, (2) evaluating what proportion of those would be vulnerable to a tsunami depending on various run-up scenarios, (3) providing tools to the local authorities for elaborating efficient evacuation plans and securing essential services outside the hazard zones. Using a GIS-based dasymetric mapping method previously tested in New Caledonia for assessing, calibrating, and mapping population distribution at high resolution, we produce maps that combine population clusters, critical elevation contours, and the precise location of essential services (hospitals, airports, shopping centers, etc.), backed up by before–after imagery accessible online. Results show that 62% of the population on the main island of Tonga lives in well-defined clusters between sea level and the 15 m elevation contour, which is also the value of the maximum tsunami run-up reported on this occasion. The patterns of vulnerability thus obtained for each island in the archipelago, are further compared to the destruction patterns recorded after the earthquake-related 2009 tsunami in Tonga, thereby also allowing us to rank exposure and potential for cumulative damage as a function of tsunami cause and source-area. By relying on low-cost tools and incomplete datasets for rapid implementation in the context of natural disasters, this approach can assist in (1) guiding emergency rescue targets, and (2) elaborating future land-use planning priorities for disaster risk-reduction purposes. By involving an interactive mapping tool to be shared with the resident population, the approach aims to enhance disaster-preparedness and resilience. It works for all types of natural hazards and is easily transferable to other insular settings.
How to cite: Thomas, B. E. O., Roger, J., and Gunnell, Y.: A rapid, low-cost, high-resolution, map-based assessment of the January 15, 2022 tsunami impact on population and buildings in the Kingdom of Tonga, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13580, https://doi.org/10.5194/egusphere-egu22-13580, 2022.