EGU22-13581
https://doi.org/10.5194/egusphere-egu22-13581
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Observation of acoustic normal modes of the atmosphere after the 2022 Hunga-Tonga eruption.

Rudolf Widmer-Schnidrig
Rudolf Widmer-Schnidrig
  • Black Forest Observatory (BFO), University of Stuttgart, Stuttgart, Germany (widmer@gis.uni-stuttgart.de)

The phreatic eruption of Hunga-Tonga on January 15, 2022 was so energetic that it excited globe circling air-waves. These wave packets with a dominant period of 30 minutes have been observed in single barograms even after completing at least  four orbits or 6 days after the eruption. Constructive and destructive interference between waves that have left the source region in opposite direction lead to the emergence of standing pressure waves: normal modes of the atmosphere.

 

We report on individual modes of spherical harmonic degree between 30 and 80 covering the frequency bend from 0.2 mHz to 0.8 mHz. These modes belong to the Lamb wave equivalent modes with a phase velocity of 313 m/s.  They are trapped to the Earth’s surface, decay exponentially with altitude and their particle motion is longitudinal and horizontal. The restoring force is dominated by incompressibility. 

 

In the frequency band where we observe these modes the mode branches do not cross with mode branches of the solid Earth. Hence we do not expect any significant coupling with seismic normal modes of the solid Earth. Such a crossing occurs at 3.7mHz and aboce.

 

How to cite: Widmer-Schnidrig, R.: Observation of acoustic normal modes of the atmosphere after the 2022 Hunga-Tonga eruption., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13581, https://doi.org/10.5194/egusphere-egu22-13581, 2022.

Displays

Display file