Volcanogenic tsunami on January 15, 2022: insights from deep-ocean measurements
- 1M.V.Lomonosov Moscow State University, Faculty of Physics, Moscow, Russian Federation (m.a.nosov@mail.ru)
- 2Institute of Marine Geology and Geophysics, Far Eastern Branch of Russian Academy of Sciences, Yuzhno-Sakhalinsk
The explosive eruption of the Hunga Tonga-Hunga Ha'apai volcano on January 15, 2022 triggered tsunami waves that were observed throughout the Pacific Ocean. In particular, the waves were recorded by several dozen deep-ocean DART stations located at source distances from hundreds to more than 10 thousand kilometers. Our study is aimed at analyzing tsunami waveforms recorded by DART stations in order to identify the formation mechanisms of this volcanogenic tsunami. Waveforms are processed using wavelet analysis. The arrival times of signals of different genesis are estimated making use robust physical assumptions, numerical modeling and satellite images. It has been found that in all records the tsunami signal is clearly observed long before the calculated moment of arrival of gravity surface waves caused by sources localized in the immediate vicinity of the volcano. On the records obtained by distant stations (~10000 km) dispersive gravity waves arrive with a delay of several hours after the signals following the passage of acoustic wave in the atmosphere. In addition to the analysis of waveforms, theoretical estimates of the amplitude of gravity waves in the ocean, caused by an acoustic wave in the atmosphere, will be presented. We also provide a theoretical estimate on how acoustic waves in the atmosphere manifest in pressure variations recorded by an ocean-bottom sensor.
This study was funded by a grant of the Russian Science Foundation № 22-27-00415, https://rscf.ru/en/project/22-27-00415/.
How to cite: Nosov, M., Sementsov, K., Kolesov, S., and Pryadun, V.: Volcanogenic tsunami on January 15, 2022: insights from deep-ocean measurements, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13591, https://doi.org/10.5194/egusphere-egu22-13591, 2022.