EGU22-13594
https://doi.org/10.5194/egusphere-egu22-13594
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Observation and simulation of the meteotsunami generated in the Mediterranean Sea by the Tonga eruption on 15 January 2022

Audrey Gailler1, Philippe Heinrich1, Vincent Rey2, Hélène Hébert1, Aurélien Dupont1, Constantino Listowski1, Edouard Forestier3, and Stavros Ntafis4
Audrey Gailler et al.
  • 1CEA, DAM, DIF, Arpajon, France (audrey.gailler@cea.fr)
  • 2Université de Toulon, AMU, CNRS/INSU, IRD, Mediterranean Institute of Oceanography, 83041 Toulon Cedex 09, France
  • 3ENSTA, France. 828 Bd des Maréchaux, 91120 Palaiseau, France
  • 4National Observatory of Athens, Institute for Environmental Research and Sustainable Development, 15236 Athens, Greece

Meteotsunamis are long ocean waves generated by atmospheric disturbances. The Tonga volcano eruption on 15 January 2022 generated a Lamb pressure wave propagating all over the globe and generating a tsunami observed at most tide gauges in the world. A first atmospheric wave arrived 20 hours after the eruption on the French Mediterranean coasts and propagated southward. This abrupt atmospheric pressure change was recorded by hundreds of barometers of weather stations around Europe. A second one originating from Africa was observed four hours later with an attenuated amplitude. The first wave can be roughly defined by a sinusoid signal with a period close to one hour and an amplitude of 150 Pa. The associated tsunami was observed by the French stations of the HTM-NET network (https://htmnet.mio.osupytheas.fr/) [1]. Amplitudes range from a few cm to 15 cm and periods range from 20 min to 1 hour.

 

Numerical simulation of the tsunami is performed by the operational code Taitoko developed at CEA [2]. The nested multigrid approach is used to simulate the water waves propagating in the bay of Toulon. The meteotsunami is generated by calculating analytically the atmospheric pressure gradient in the momentum equation. Comparisons of time series between numerical solutions and records are very satisfactory in regions defined by a high resolution topo-bathymetry. A second tsunami simulation is performed by introducing a second pressure wave propagating in the North direction and reaching the HTM-NET stations 4 hours after the first arrival. This second pressure wave results in additional and higher tsunami water waves in agreement with records.

 

 

[1] Rey, V., Dufresne, C., Fuda, J. L., Mallarino, D., Missamou, T., Paugam, C., Rougier, G., Taupier-Letage, I., On the use of long term observation of water level and temperature along the shore for a better understanding of the dynamics: Example of Toulon area, France Ocean Dyn., 2020, https://doi.org/10.1007/s10236-020-01363-7.

[2] Heinrich, P, Jamelot, A., Cauquis, A., Gailler A., 2021. Taitoko, an advanced code for tsunami propagation, developed at the French Tsunami Warning Centers. European Journal of Mechanics - B/Fluids 88(84) . DOI: 10.1016/j.euromechflu.2021.03.001.

How to cite: Gailler, A., Heinrich, P., Rey, V., Hébert, H., Dupont, A., Listowski, C., Forestier, E., and Ntafis, S.: Observation and simulation of the meteotsunami generated in the Mediterranean Sea by the Tonga eruption on 15 January 2022, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13594, https://doi.org/10.5194/egusphere-egu22-13594, 2022.