A high-resolution record of vertically-resolved seawater salinity in the Caribbean Sea mixed layer since 1700 AD.
- Indiana State University EES, Earth and Environmental Systems, Terre Haute, United States of America (amos.winter@indstate.edu)
The Caribbean Sea in the tropical Atlantic is one of the major heat engines of the Earth and a sensitive area for monitoring climate variability. Salinity changes in the Caribbean Sea record changes in ocean currents and can provide information about variations in ocean heat transport. Seawater salinity in the Caribbean Sea has been monitored in recent decades, nevertheless, of all oceanographic environmental parameters salinity information before the instrumental period remains limited, due to the difficulty of reconstructing salinity, arguably the most difficult natural archives to recreate. We were able to reconstruct salinity changes in the Caribbean Sea from 1700 to the present from southwest Puerto Rico using slowly growing and long-lived scelerosponges from southwest Puerto Rico. These well-dated sponges are known to precipitate their skeletons in isotopic equilibrium (i.e., their record is not affected much by vital effects) and were retrieved from various depths in the mixed layer, from the surface to 90 m depth. We were able to establish salinity changes by deconvoluting stable isotopes (d18O) and trace element (Sr/Ca) proxies taken from the sponges at regular intervals. In this contribution, we will present the salinity record and illustrate the process for salinity reconstruction. We will also discuss how we determine how salinity changes in our record relate to radiative forcing as well as connect them with dominant mechanisms operating in the region, including changes in the position of the InterTtropical Convergence Zone and intensity of the Atlantic meridional Overturning Circulation over time.
How to cite: Winter, A., Zanchettin, D., McCulloch, M., Rigo, M., Sherman, C., and Rubino, A.: A high-resolution record of vertically-resolved seawater salinity in the Caribbean Sea mixed layer since 1700 AD., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1388, https://doi.org/10.5194/egusphere-egu22-1388, 2022.