EGU22-1829
https://doi.org/10.5194/egusphere-egu22-1829
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hidden Tectonics: Finding faults in (seemingly) climate controlled landscapes

Jorien L.N. van der Wal1, Veit Nottebaum2, Georg Stauch2, Boris Gailleton3, Steven Binnie4, Justin Tully5, Ochirbat Batkhishig6, Frank Lehmkuhl2, and Klaus Reicherter1
Jorien L.N. van der Wal et al.
  • 1Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany
  • 2Department of Geography, RWTH Aachen University, Aachen, Germany
  • 3Land Surface Dynamics, Institute of Geography, The University of Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland
  • 4Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
  • 5Petro Matad LLC, Ulaanbaatar, Mongolia
  • 6Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

Central Asia’s arid landscape provides a key natural laboratory to study the effects of slow deformation in continental interiors. Far-field stresses of the India-Eurasia collision have created major transpressive fault systems across the continent since the Cenozoic. In the 20th century the northward progression of this deformation resulted in four major earthquakes in Mongolia, among which was the 1957 Mw 8.1 Gobi Altai earthquake in southern Mongolia. Palaeoseismic research following this event has allowed for quantification of deformation rates since the Late Pleistocene. Yet, the application of classic palaeoseismological methods disregards the possibility of more dispersed deformation, as was suggested in other continental interiors.

The 1957 earthquake ruptured ~350 km of the Bogd fault in southern Mongolia, along the mountain front of a series of Gobi Altai restraining bends just south of the Valley of (Gobi) Lakes basin. The high restraining bends are bound by small, steep alluvial fans that reflect a ~100 kyr climate cyclicity, whereas the low relief Valley of Gobi Lakes is characterized by endorheic lakes and sparsely dated large, gentle fans. To determine whether deformation during the 1957 earthquake was representative of regional deformation, we expanded the active tectonic record by increasing the spatial and temporal scales of our studies. Along the highest restraining bend, Ikh Bogd Mountain (~4,000 m asl), we confirmed vertical slip rates of <0.3 mm/yr along single fault strands. We also observed cumulative deformation and increased steepness of older alluvial fan levels, which could suggest progressive tilting by reverse faults along the mountain front. If this tilting is merely tectonically induced, uplift rates of Ikh Bogd could reach 0.9-1 mm/yr. Morphometric analyses indicate that faults in the restraining bend’s interior still affect river steepness. This could imply that multiple sub-parallel faults are active simultaneously, accumulating to the higher uplift rate suggested by fan tilting.

The basin north of Ikh Bogd comprises the endorheic Orog Nuur (lake) which is mostly fed by the Tuyn Gol (river) that drains the Hangay Mountains in central Mongolia. Its large alluvial fans are cross-cut by four tectonic lineaments that can each accommodate M~7 earthquakes and that have a cumulative vertical slip rate that is similar to the Bogd fault. This suggests that they are significant components of the regional structure, yet they were previously overlooked because the recurrence intervals of surface-rupturing events are slower than climatic rates. In the Orog Nuur Basin itself, reflection seismics indicate that Jurassic-Cretaceous extension structures were reactivated by Miocene-Present transpression. The effect these structures have on the Basin’s modern geomorphology indicates that they may still be active, although lacustrine and fluvial sediments do not reflect any tectonic activity since MIS 5 (~120 ka).

By expanding spatial and temporal scales of active tectonic studies in southern Mongolia, we show that variability in the interplay between climate, tectonics, and geomorphology can mask the complexity of a tectonic structure. By adapting methods and incorporating the different processes that affect landscapes, such studies contribute to more complete seismic hazard assessments in slowly deforming continental interiors.

How to cite: van der Wal, J. L. N., Nottebaum, V., Stauch, G., Gailleton, B., Binnie, S., Tully, J., Batkhishig, O., Lehmkuhl, F., and Reicherter, K.: Hidden Tectonics: Finding faults in (seemingly) climate controlled landscapes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1829, https://doi.org/10.5194/egusphere-egu22-1829, 2022.